精英家教网 > 高中数学 > 题目详情
已知f(x)=
4x
4x+2

(1)计算f(x)+f(1-x)=
 

(2)若{an}满足an=f(
n
1001
),则S1000=
 

(3)f(
1
1000
)+f(
2
1000
)+f(
3
1000
)+…+f(
999
1000
)=
 

(4)一般情况下,若Sn=f(
1
n+1
)+f(
2
n+1
)+f(
3
n+1
)+…+f(
n
n+1
),则Sn=
 
考点:函数的值
专题:函数的性质及应用
分析:根据条件,先计算f(x)+f(1-x)是常数,然后按照条件分别进行计算即可得到结论.
解答: 解:(1)∵f(x)=
4x
4x+2

∴f(x)+f(1-x)
4x
4x+2
+
41-x
41-x+2
=
4x
4x+2
+
4
4+2•4x
=
4x
4x+2
+
2
2+4x
=
2+4x
2+4x
=1

(2)若{an}满足an=f(
n
1001
),则S1000=f(
1
1001
)+f(
2
1001
)+…+f(
999
1001
)+f(
1000
1001
)=500×[f(
1
1001
)+f(
1000
1001
)=500;
(3)f(
1
1000
)+f(
2
1000
)+f(
3
1000
)+…+f(
999
1000
)=499×[f(
1
1000
)+f(
999
1000
)]+f(
500
1000
)=499+f(
1
2
)=499+
4
4
+2
=499+
2
2+2
=
1
2
+499
=499
1
2

(4)若n是偶数,则Sn=f(
1
n+1
)+f(
2
n+1
)+f(
3
n+1
)+…+f(
n
n+1
)=
n
2
[f(
1
n+1
)+f(
n
n+1
)]=
n
2

若n是奇数,则Sn=f(
1
n+1
)+f(
2
n+1
)+f(
3
n+1
)+…+f(
n
n+1
)=
n-1
2
[f(
1
n+1
)+f(
n
n+1
)]+f(
1
2
)=
n-1
2
+
1
2
=
n
2

综上Sn=
n
2

故答案为:(1)1,(2)500,(3)499
1
2
(4)
n
2
点评:本题主要考查函数值的计算,根据指数函数的运算法则计算出f(x)+f(1-x)=1是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
a
+
b
|=3,则|
b
|的取值范围为(  )
A、[1,2]
B、[0,4]
C、[1,3]
D、[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,m,4},B={3,4},则“m=2”是“A∩B={4}”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且过点P(1,
3
2

(Ⅰ)椭圆C的方程;
(Ⅱ)设椭圆C的左右焦点分别为F1,F2,过点F2的直线l与椭圆C交于M,N两点.
(1)当直线l的倾斜角为45°时,求|MN|的长;
(2)求△MF1N的内切圆的面积的最大值,并求出当△MF1N的内切圆的面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A,ω>0,-π<φ<π)在一个周期内的图象如图.
(1)求函数y=f(x)的表达式;
(2)求方程f(x)=1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a∈R),设F(x)=f(x)+g(x),G(x)=f(x)•g(x)
(1)求函数F(x)的单调区间;
(2)若以函数y=F(x)(x∈(0,2))图象上任一点P(x0,y0)为切点的切线斜率为k≤
1
2
恒成立,求实数a的取值范围;
(3)当a=1时,对任意的x1,x2∈(0,2),且x1<x2,已知存在x0∈(x1,x2)使得G′(x0)=
G(x2)-G(x1)
x2-x1
,求证:x0
x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a(x-1)
x+1
(a∈R,a≠0),g(x)=x2+x.
(1)求函数h(x)=alnx-
a(x-1)
x+1
•g(x)的单调区间,并确定其零点个数;
(2)若f(x)在其定义域内单调递增,求a的取值范围;
(3)证明不等式 
1
3
+
1
5
+
1
7
+…+
1
2n+1
<ln
n+1
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x3-7x2+14x-8=0},B={x|x3+2x2-c2x-2c2=0,c>0}
(1)求A,B的各个元素;
(2)以集合A∪B的任意元素a,b作为二次方程x2+px+q=0的两个根,在f(x)=x2+px+q的最小值中,求出最大的a,b的值或最小的a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x3+x2+ax+1
在(-1,0)上有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)证明:f(x2
11
12

查看答案和解析>>

同步练习册答案