分析 (1)由an+1=3an+2(n∈N*),变形为an+1+1=3(an+1),即可证明;
(2)利用等比数列的前n项和公式即可得出.
解答 (1)证明:∵a1=2,an+1=3an+2(n∈N*),
∴an+1+1=3(an+1),
∴数列{an+1}是等比数列,首项为3,公比为3.
(2)解:由(1)可得:an+1=3n,解得an=3n-1.
Sn=$\frac{3({3}^{n}-1)}{3-1}$-n=$\frac{{3}^{n+1}}{2}$-$\frac{3}{2}$-n.
点评 本题考查了递推关系、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞] | B. | [2,+∞] | C. | [$\frac{3}{4}$,2] | D. | [0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | tan$\frac{α}{2}$=$\frac{1-cosα}{sinα}$ | B. | $\frac{1+cos2α}{2}$=cos2α | ||
| C. | $\frac{2tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=tanα | D. | ±$\sqrt{\frac{1-cosα}{1+cosα}}$=tan$\frac{α}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{-1-\sqrt{5}}{2}$)∪($\frac{-1+\sqrt{5}}{2}$,+∞) | B. | (-∞,$\frac{-1-\sqrt{5}}{2}$)∪($\frac{1+\sqrt{5}}{2}$,+∞) | ||
| C. | ($\frac{-1+\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$) | D. | ($\frac{-1+\sqrt{5}}{2}$,1)∪(1,$\frac{1+\sqrt{5}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{x-1}{{x}^{2}-1}$,g(x)=$\frac{1}{1+x}$ | B. | f(x)=($\sqrt{x}$)2,g(x)=$\sqrt{{x}^{2}}$ | ||
| C. | f(x)=$\root{3}{{x}^{4}-{x}^{3}}$,g(x)=x$\root{3}{x-1}$ | D. | f(x)=1,g(x)=sin(arcsinx) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 16 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 8 | 3 | 4 |
| 1 | 5 | 9 |
| 6 | 7 | 2 |
| A. | 9 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com