精英家教网 > 高中数学 > 题目详情
10.已知a、b、m∈R+且a>b,则(  )
A.$\frac{a}{b}$>$\frac{a+m}{b+m}$B.$\frac{a}{b}$=$\frac{a+m}{b+m}$
C.$\frac{a}{b}$<$\frac{a+m}{b+m}$D.$\frac{a}{b}$与$\frac{a+m}{b+m}$间的大小不能确定

分析 “作差”利用不等式的基本性质即可得出.

解答 解:∵a、b、m∈R+且a>b,
∴$\frac{a}{b}-\frac{a+m}{b+m}$=$\frac{m(a-b)}{b(b+m)}$>0,
∴$\frac{a}{b}>\frac{a+m}{b+m}$,
故选:A.

点评 本题考查了“作差”利用不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.与(a-b)(b-c)(c-a)相等的行列式是(  )
A.$|\begin{array}{l}{1}&{1}&{1}\\{a}&{b}&{c}\\{bc}&{ca}&{ab}\end{array}|$B.$|\begin{array}{l}{{a}^{2}}&{a}&{1}\\{{b}^{2}}&{b}&{1}\\{{c}^{2}}&{c}&{1}\end{array}|$
C.$|\begin{array}{l}{bc}&{ca}&{ab}\\{a}&{b}&{c}\\{1}&{1}&{1}\end{array}|$D.$|\begin{array}{l}{{a}^{2}}&{{b}^{2}}&{{c}^{2}}\\{a}&{b}&{c}\\{1}&{1}&{1}\end{array}|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中三边之比a:b:c=2:3:$\sqrt{19}$,则△ABC中最大角的大小为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数$f(x)=\left\{\begin{array}{l}x-[x],x≤0\\ f(x-1),x>0\end{array}\right.$,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是(-1,-$\frac{1}{2}$]∪[$\frac{1}{4}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.据科学计算,运载“神七”的“长征”二号系列火箭在点火后第一秒钟通过的路程为2km,以后每秒钟通过的路程增加2km,经过15秒火箭与飞船分离,则这15秒火箭共飞行了(  )
A.480kmB.65534kmC.120kmD.240km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在直角坐标系xoy中,“a>b”是“方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1表示椭圆”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分条件又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两个正数a,b满足a+b=1
(1)求证:$\frac{1}{a}$+$\frac{1}{b}$≥4
(2)若不等式|x-2|+|2x-1|≤$\frac{1}{a}$+$\frac{1}{b}$对任意正数a,b都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知斜率为1的直线过椭圆$\frac{x^2}{4}+{y^2}$=1的焦点,且与椭圆交于A,B两点,则线段AB的长是$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\sqrt{\frac{x-6}{x-1}}$的定义域为(  )
A.(-∞,1]∪[6,+∞)B.(-∞,1)∪[6,+∞)C.(-3,1)∪(2,+∞)D.[-3,1)∪(2,+∞)

查看答案和解析>>

同步练习册答案