精英家教网 > 高中数学 > 题目详情
12.已知底面是边长为2的正方形的四棱锥P-ABCD中,四棱锥的侧棱长都为4,E是PB的中点,则异面直线AD与CE所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 由题意,AD∥BC,异面直线AD与CE所成角为∠BCE,求出CE,利用余弦定理,即可得出结论.

解答 解:由题意,AD∥BC,异面直线AD与CE所成角为∠BCE,则
由中线长公式,可得16+4CE2=2(16+4),∴CE=$\sqrt{6}$,
∴cos∠BCE=$\frac{4+6-4}{2×2×\sqrt{6}}$=$\frac{\sqrt{6}}{4}$,
故选A.

点评 本题考查空间角,考查余弦定理的运用,正确作出异面直线所成角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在一段时间内,某种商品的价格x(元)和某大型公司的需求量y(千件)之间的一组数据如表:
价格x8.28.610.011.311.9
需求量y6.27.58.08.59.8
根据上表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.据此估计,某种商品的价格为15元时,求其需求量约为多少千件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=sin({4x-\frac{π}{3}})$的图象的一条对称轴方程是(  )
A.$x=-\frac{11π}{24}$B.$x=\frac{π}{8}$C.$x=\frac{π}{4}$D.$x=\frac{11π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|3x+1<0},B={x|6x2-x-1≤0},则A∩B=(  )
A.$[-\frac{1}{3},\frac{1}{2}]$B.C.$(-∞,\frac{1}{3})$D.$\{\frac{1}{3}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过动点M作圆:(x-2)2+(y-2)2=1的切线MN,其中N为切点,若|MN|=|MO|(O为坐标原点),则|MN|的最小值是$\frac{{7\sqrt{2}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点、极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中ρ≥0,θ∈[0,2π)).若倾斜角为$\frac{3π}{4}$且经过坐标原点的直线l与圆E相交于点A(A点不是原点).
(1)求点A的极坐标;
(2)设直线m过线段OA的中点M,且直线m交圆E于B,C两点,求||MB|-|MC||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=log2(x+a)与g(x)=x2-(a+1)x-4(a+5)存在相同的零点,则a的值为(  )
A.4或-$\frac{5}{2}$B.4或-2C.5或-2D.6或-$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P在抛物线x2=4y上,则当点P到点Q(1,2)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.(2,1)B.(-2,1)C.$({-1,\frac{1}{4}})$D.$({1,\frac{1}{4}})$

查看答案和解析>>

同步练习册答案