精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x-$\frac{1}{x}$,数列{an}满足f(an)=-2n,且an>0 判断数列{an}的增减性.

分析 函数f(x)=x-$\frac{1}{x}$,数列{an}满足f(an)=-2n,可得an-$\frac{1}{{a}_{n}}$=-2n,又an>0,解得an=$\sqrt{{n}^{2}+1}$-n.即可判断出单调性.

解答 解:∵函数f(x)=x-$\frac{1}{x}$,数列{an}满足f(an)=-2n,
∴an-$\frac{1}{{a}_{n}}$=-2n,又an>0,
解得an=$\sqrt{{n}^{2}+1}$-n.
∴an=$\frac{1}{\sqrt{{n}^{2}+1}+n}$单调递减.

点评 本题考查了数列的单调性,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.$\int\begin{array}{l}1\\-1\end{array}\sqrt{1-{x^2}}\;dx$=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin75°=(  )
A.$\frac{\sqrt{6}-\sqrt{3}}{4}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}+\sqrt{3}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在等腰梯形ABDE中,AE=ED=BD=a,当等腰梯形ABDE的面积最大时,角θ为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)的定义域为R,f(-1)=2,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,则f(x)>2x+4的解集为(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)sin($\frac{π}{2}$+α)cos2($\frac{π}{2}$+α)sin(3π-α)tan(π+α);
(2)$\frac{sin(-4π+α)cos(π-α)cos(\frac{π}{2}+α)sin(\frac{11π}{2}-α)}{sin(-\frac{π}{2}-α)cos(3π-α)cos(\frac{9π}{2}+α)sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知x,y满足不等式组$\left\{\begin{array}{l}{x+y-4≥0}\\{x-y+2≥0}\\{2x-y-5≤0}\end{array}\right.$,则z=|x+2y-18|的最大值为17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an},{bn}满足:a1=2,b1=2015,且对任意的正整数n,an,an+1,bn和an+1,bn+1,bn均成等差数列
(1)证明:{an-bn}和{an+2bn}均成等比数列
(2)是否存在唯一的正整数c,使得an<c<bn恒成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|=2|\overrightarrow b|$,则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角是60°.

查看答案和解析>>

同步练习册答案