分析 (1)先证出BB1⊥AC,AC⊥B1D,即可证明AC⊥平面BB1D,从而证出AC⊥BD;
(2)先证明CC1∥平面BB1D,得出CC1∥FG,从而得出FG∥BB1,再证出FG∥平面AA1B1B.
解答 解:(1)证明:四棱柱ABCD-A1B1C1D1中,
∵BB1⊥底面ABCD,AC?平面ABCD,
∴BB1⊥AC;
又AC⊥B1D,
BB1∩B1D=B1,
∴BB1?平面BB1D,B1D?平面BB1D,
∴AC⊥平面BB1D;
又BD?平面BB1D,
∴AC⊥BD;
(2)四棱柱ABCD-A1B1C1D1中,CC1∥BB1,
CC1?平面BB1D,BB1?平面BB1D,
∴CC1∥平面BB1D;
又平面CEC1∩平面BB1D=FG,
∴CC1∥FG,
∴FG∥BB1;
又FG?平面ABB1A1,BB1?平面ABB1A1,
∴FG∥平面AA1B1B.
点评 本题主要考查了空间中的直线与平面垂直、直线与平面平行的判定和性质的应用问题,也考查了空间想象能力和推理论证能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a30,a1 | B. | a1,a30 | C. | a8,a30 | D. | a8,a7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 公务员 | 教师 | 合计 | |
| 同意延迟退休 | 40 | n | 70 |
| 不同意延迟退休 | m | 20 | p |
| 合计 | 50 | 50 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com