| A. | [0,12] | B. | [2,10] | C. | [0,10] | D. | [2,12] |
分析 根据题意,设f(2)=λf(1)+μf(-1),结合题中函数关系式建立关于λ、μ的方程组解出λ=3且μ=1,从而得到f(2)=3f(1)+f(-1),最后利用不等式的基本性质将同向不等式相加,即得f(2)的取值范围.
解答 解:∵f(x)=ax2+bx,
∴f(1)=a+b,f(-1)=a-b,f(2)=4a+2b
设f(2)=λf(1)+μf(-1),
则$\left\{\begin{array}{l}{4=λ+μ}\\{2=λ-μ}\end{array}\right.$,解之得λ=3且μ=1,
即f(2)=3f(1)+f(-1),
∵1≤f(1)≤3,∴3≤3f(1)≤9…①
又∵-1≤f(-1)≤1,…②
∴不等式①②相加,
得2≤3f(1)+f(-1)≤10,
即2≤f(2)≤10,
故f(2)的取值范围是[2,10],
故选:B.
点评 本题给出二次函数在已知f(1)、f(-1)的范围性质下求f(2)的范围.着重考查了不等式的基本性质和简单的性质规划等知识,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {x|l<x<2} | B. | {x|l≤x≤2} | C. | {x|l≤x<2} | D. | {x|0≤x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 答对题目数 | [0,8) | 8 | 9 | 10 |
| 女 | 30 | 4 | 4 | 2 |
| 男 | 20 | 20 | 16 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∩B={x|x<0} | B. | A∪B=R | C. | A∩B={x|x<1} | D. | A∪B={x|x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2 | |
| B. | 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2 | |
| C. | 把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移 $\frac{π}{6}$个单位长度,得到曲线C2 | |
| D. | 把C1上各点的横坐标缩短到原来的 $\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com