精英家教网 > 高中数学 > 题目详情
5.某地区的年降水量在下列范围内的概率如表所示:
年降水量(mm)[200,250][250,300][300,350][350,400]
概率0.300.210.140.08
则年降水量在[200,300](mm)范围内的概率为0.51,年降水量在[300,400](mm)范围内的概率为0.22.

分析 由某地区的年降水量在下列范围内的概率表利用互斥事件概率加法公式能求出年降水量在[200,300](mm)范围内的概率和年降水量在[300,400](mm)范围内的概率.

解答 解:由某地区的年降水量在下列范围内的概率表知:
年降水量在[200,300](mm)范围内的概率为p1=0.30+0.21=0.51,
年降水量在[300,400](mm)范围内的概率为p2=0.14+0.08=0.22.
故答案为:0.51   0.22.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在技术工程中,常用到双曲正弦函数$shx=\frac{{{e^x}-{e^{-x}}}}{2}$和双曲余弦函数$chx=\frac{{{e^x}-{e^{-x}}}}{2}$,其实双曲正弦函数和双曲线余弦函数与我们学过的正弦和余弦函数相似,比如关于正、余弦函数有cos(x+y)=cosxcosy-sinxsiny成立,而关于双曲正、余弦函数满足ch(x+y)=chxchy-shxshy,请你类比关系式,得出关于双曲正弦、双曲余弦函数的关系中不正确的是(  )
A.sh(x+y)=shxchy+chxshyB.sh2x=2shxchx
C.ch2x=2sh2x-1D.ch2x+sh2x=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.当a>0,b>0时,①(a+b)($\frac{1}{a}$+$\frac{1}{b}$)≥4;②a2+b2+2≥2a+2b;③$\sqrt{|a-b|}$≥$\sqrt{a}$-$\sqrt{b}$;④$\frac{2ab}{a+b}$≥$\sqrt{ab}$.
以上4个不等式恒成立的是①②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用辗转相除法和更相减损术求1734和816的最大公约数(写出过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线 C1极坐标方程是:ρ=cosθ-sinθ,将其化为直角坐标方程为x2+y2-x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x2-xf′(0)-1,则f(2017)的值为(  )
A.2013×2015B.2014×2016C.2015×2017D.2016×2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$z=a+\sqrt{3}i$(a>0)且|z|=2,则$\overline z$=(  )
A.$1-\sqrt{3}i$B.$1+\sqrt{3}i$C.$2-\sqrt{3}i$D.$3+\sqrt{3}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,P为棱BB1上的一个动点.
(1)求三棱锥C-PAA1的体积;
(2)当A1P+PC取得最小值时,求证:PD1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-2)lnx-ax+1.
(1)若f(x)在区间(1,+∞)上单调递增,求实数a的取值范围;
(2)若存在唯一整数x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案