精英家教网 > 高中数学 > 题目详情
已知关于x的方程|x2-2x|=a(a>0)的解集为P,则P中所有元素的和可能是(  )
A、1,2,3
B、2,3,4
C、3,4,5
D、2,3,5
考点:绝对值不等式的解法
专题:计算题,集合
分析:先去掉绝对值,转化为两个方程,对a讨论,a=1,a>1,0<a<1,运用根的判别式的符号和韦达定理,即可得到结论.
解答: 解:关于x的方程|x2-2x|=a(a>0)等价于x2-2x-a=0①,或者x2-2x+a=0②.
由题意知,P中元素的和应是方程①和方程②中所有根的和.
∵a>0,对于方程①,△=(-2)2-4×1×(-a)=4+4a>0.
∴方程①必有两不等实根,由根与系数关系,得两根之和为2,
而对于方程②,△=4-4a,当a=1时,△=0可知方程②有两相等的实根为1,
在集合中应按一个元素来记,故P中元素的和为3.
当a>1时,△<0方程②无实根,
故P中元素的加和为2.
当0<a<1时,△>0,方程②有两不等实根,由根与系数关系,
两根之和为2,故P中元素的和为4.
综上可得P中所有元素的和可能是2,3,4.
故选:B.
点评:本题考查绝对值方程的解法,根与系数关系,集合中元素的性质,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如表:
 编号 1 23 45 67
 身高x 163 164 165 166 167 168 169
 体重y 5252 5355 5456 56
(1)求根据女大学生的身高x预报体重y的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重;
(3)试分析说明回归方程预报的效果.
附:1.回归直线的斜率和截距的最小二乘法估计公式分别为:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
a
=
.
y
-
b
.
x

2.反映回归效果的公式为:R2=1-
n
i-1
(y1
y1
)2
n
i=1
(yi-
.
y
)
,其中R2越接近于1,表示回归的效果越好.
3.参考数据:
7
i=1
(y1-
yi
2=2.25.

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=(sinx)cosx(sinx>0),求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:

求sin42°sin72°+cos42°cos72°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生500名)中,采用分层抽样的方法抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[0,30),②[30,60),③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240],得到频率分布直方图如图所示.已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分总计
走读生
住宿生10
总计
据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关?
(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为X,求X的分布列及期望;
参考公式:K2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D是BC上的一点.已知∠B=60°,AD=2,AC=
10
,DC=
2
,则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设|
OA
|=|
OB
|=2,∠AOB=60°,
OP
OA
OB
,且λ+μ=2,则
OA
OP
上的投影的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将f(x)=cosx向右平移
π
6
个单位,得到函数y=g(x)的图象,则g(
π
2
)=(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:xcosα+ycosα=2(α∈R),圆C:x2+y2+2xcosθ+2ysinθ=0(θ∈R),则直线l与圆C的位置关系是(  )
A、相交B、相切
C、相离D、与α,θ有关

查看答案和解析>>

同步练习册答案