精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)的定义域为R,若存在常数k>0,使|f(x)|≤$\frac{k}{2016}$|x|对一切实数x均成立,则称f(x)为“期盼函数”.给出下列函数:
①f(x)=x3;②f(x)=$\sqrt{3}$sinx+cosx;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)=$\frac{x}{{2}^{x}+1}$
其中f(x)是“期盼函数”的有(  )个.
A.1B.2C.3D.4

分析 根据新定义,对每个函数一一验证,即可得出结论.

解答 解:①f(x)=x3,|f(x)|=|x3|≤$\frac{k}{2016}$|x|,即|x2|≤$\frac{k}{2016}$,不存在这样的k对一切实数x均成立,
②f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),|f(x)|=|2sin(x+$\frac{π}{6}$)|≤$\frac{k}{2016}$|x|,
x=0时,|f(x)|=1≤0,不成立;
③f(x)=$\frac{x}{{x}^{2}+x+1}$,则|f(x)|=|$\frac{x}{{x}^{2}+x+1}$|=$\frac{|x|}{{(x+\frac{1}{2})}^{2}+\frac{3}{4}}$≤$\frac{4}{3}$|x|,
故对任意的$\frac{k}{2016}$>$\frac{4}{3}$,都有|f(x)|<$\frac{k}{2016}$|x|,故③正确;
④f(x)=$\frac{x}{{2}^{x}+1}$,|f(x)|=$\frac{|x|}{{2}^{x}+1}$≤$\frac{k}{2016}$|x|,故④正确;
故选:B.

点评 本题主要考查学生的阅读理解能力.知识点方面主要考查了函数的最值及其几何意义,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,点$A(cosθ,\sqrt{2}sinθ),B(sinθ,0)$,其中θ∈R.
(1)当θ∈[0,$\frac{π}{2}$]时,求|$\overrightarrow{AB}$|的最大值.
(2)当$θ∈[{0,\frac{π}{2}}]$,|$\overrightarrow{AB}$|=$\sqrt{\frac{5}{2}}$时,求$sin(2θ+\frac{5π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i是虚数单位,若1+i=z(1-i),则z=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=sin($\frac{x}{2}$+$\frac{π}{4}$),则f($\frac{π}{2}$)=(  )
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点M(3,$\sqrt{2}$)在此双曲线上,点F2到直线MF1的距离为$\frac{4\sqrt{6}}{9}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)定义在(-1,0)∪(0,1)上,且$f(\frac{1}{2})=0$,当x>0时,总有$(\frac{1}{x}-x)f'(x)•ln(1-{x^2})>2f(x)$,则不等式f(x)<0的解集为(  )
A.{x|-1<x<1且x≠0}B.$\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$
C.$\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知$\overrightarrow{AM}=\overrightarrow{c}$、$\overrightarrow{AN}=\overrightarrow{d}$,试用$\overrightarrow{c}$、$\overrightarrow{d}$表示$\overrightarrow{AB}$和$\overrightarrow{AD}$.
(2)在△ABC中,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b$若P,Q,S为线段BC的四等分点,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AP}+\overline{AQ}+\overrightarrow{AS}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若存在实数x0和正实数△x,使得函数f(x)满足f(x0+△x)=f(x0)+4△x,则称函数f(x)为“可翻倍函数”,则下列四个函数
①$f(x)=\sqrt{x}$;  ②f(x)=x2-2x,x∈[0,3];
③f(x)=4sinx; ④f(x)=ex-lnx.
其中为“可翻倍函数”的有①④(填出所有正确结论的番号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b-c)cosA=acosC.
(])求角A的大小;
(2)设$\overrightarrow{m}$=(0,-1),$\overrightarrow{n}$=(cosB,2cos2$\frac{C}{2}$).试求|$\overrightarrow{m}$+$\overrightarrow{n}$|的最小值.

查看答案和解析>>

同步练习册答案