精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当a=l时,求的单调区间;
(2)若函数上是减函数,求实数a的取值范围;
(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.

(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.

解析试题分析:(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数上是减函数,则其导函数上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.
(1)当时,.    2分
因为函数的定义域为
所以当时,,当时,.
所以函数的单调递减区间为,单调递增区间为.    4分
(2)上恒成立.
,有,    6分
.    8分
(3)假设存在实数,使有最小值3,
.  9分
时,上单调递减,
(舍去);    10分
②当时,上单调递减,在上单调递增.
,解得,满足条件;    12分
③当时,上单调递减,
(舍去).    13分
综上,存在实数,使得当时,有最小值3.    14分
考点:1.导数性质;2.不等式求解;3.分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数满足如下条件:当时,,且对任
,都有.
(1)求函数的图象在点处的切线方程;
(2)求当时,函数的解析式;
(3)是否存在,使得等式
成立?若存在就求出),若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.    [来源:学科

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若曲线在点处的切线方程为,求的值;
(2)当时,求的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知A,b是实数,1和-1是函数f(x)=x3+Ax2+b x的两个极值点.
(1)求A和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×<(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)试问函数能否在处取得极值,请说明理由;
(2)若,当时,函数的图像有两个公共点,求的取值范围.

查看答案和解析>>

同步练习册答案