已知函数.
(1)当a=l时,求的单调区间;
(2)若函数在上是减函数,求实数a的取值范围;
(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.
(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.
解析试题分析:(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.
(1)当时,. 2分
因为函数的定义域为,
所以当时,,当时,.
所以函数的单调递减区间为,单调递增区间为. 4分
(2)在上恒成立.
令,有, 6分
得,. 8分
(3)假设存在实数,使有最小值3,
. 9分
当时,在上单调递减,
,(舍去); 10分
②当时,在上单调递减,在上单调递增.
,解得,满足条件; 12分
③当时,在上单调递减,
,(舍去). 13分
综上,存在实数,使得当时,有最小值3. 14分
考点:1.导数性质;2.不等式求解;3.分类讨论.
科目:高中数学 来源: 题型:解答题
已知函数满足如下条件:当时,,且对任
意,都有.
(1)求函数的图象在点处的切线方程;
(2)求当,时,函数的解析式;
(3)是否存在,、、、、,使得等式
成立?若存在就求出(、、、、),若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知A,b是实数,1和-1是函数f(x)=x3+Ax2+b x的两个极值点.
(1)求A和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:×…×<(n≥2,n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com