精英家教网 > 高中数学 > 题目详情
19.设复数z=1+$\frac{2}{i}$(其中i为虚数单位,$\overline{z}$为z的共轭复数),则z2+3$\overline{z}$的虚部为2.

分析 利用复数代数形式的乘除运算化简求得z,进一步得到$\overline{z}$,代入z2+3$\overline{z}$化简得答案.

解答 解:z=1+$\frac{2}{i}$=$1+\frac{-2i}{-{i}^{2}}=1-2i$,
∴$\overline{z}=1+2i$,
则z2+3$\overline{z}$=(1-2i)2+3(1+2i)=1-4i+4i2+3+6i=2i.
∴z2+3$\overline{z}$的虚部为2.
故答案为:2.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.数列{an}的前n项和Sn=33n-n2
(1)求数列{an}的通项公式; 
(2)求证:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的三个内角A,B,C满足2017cos2C-cos2A=2016-2sin2B,则$\frac{tanC•(tanA+tanB)}{tanA•tanB}$=(  )
A.$\frac{2017}{2}$B.$\frac{2}{2017}$C.$\frac{1}{2016}$D.$\frac{1}{1008}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将参数方程$\left\{\begin{array}{l}x=2+sin2θ\\ y=sin2θ\end{array}$(θ为参数)化为普通方程是(  )
A.y=x-2B.y=x+2C.y=x-2(1≤x≤3)D.y=x+2(0≤y≤1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆心在x轴上,半径长为 $\sqrt{2}$,且过点(-2,1)的圆的方程为(  )
A.(x+1)2+y2=2B.x2+(y+2)2=2
C.(x+3)2+y2=2D.(x+1)2+y2=2或(x+3)2+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2,b4,3b3成等差数列.
(1)求{an}与{bn}的通项公式;
(2)令cn=$\frac{{a}_{n}}{{b}_{n}}$,若{cn}的前项和为Tn,求证:Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知随机变量X~N(3,σ2),若P(X<a)=0.4,则P(a≤X<6-a)的值为(  )
A.0.4B.0.2C.0.1D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中:
(1)若$|{\overrightarrow a}|=|{\overrightarrow b}|$,则$\overrightarrow a$=$\overrightarrow b$或$\overrightarrow a$=-$\overrightarrow b$;  
(2)若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$;
(3)若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是非零向量,且$\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$,则$\overrightarrow a$=$\overrightarrow b$;
其中正确命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a,\overrightarrow b$的夹角为120°,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,则向量$2\overrightarrow a+3\overrightarrow b$在向量$2\overrightarrow a+\overrightarrow b$方向上的投影为$\frac{19\sqrt{13}}{13}$.

查看答案和解析>>

同步练习册答案