精英家教网 > 高中数学 > 题目详情
13.关于x的函数y=log${\;}_{\frac{1}{2}}$(x2-ax+2a)在[1,+∞)上为减函数,则实数a的取值范围是(  )
A.(-∞,2]B.(-1,+∞)C.(-1,2]D.(-∞,-1)

分析 由题意可得,t=x2-ax+2a)在[1,+∞)上为增函数,且在[1,+∞)上大于0恒成立,得到关于a的不等式组求解.

解答 解:∵函数y=log${\;}_{\frac{1}{2}}$(x2-ax+2a)在[1,+∞)上为减函数,
则t=x2-ax+2a)在[1,+∞)上为增函数,且在[1,+∞)上大于0恒成立.
则$\left\{\begin{array}{l}{\frac{a}{2}≤1}\\{{1}^{2}-a+2a>0}\end{array}\right.$,解得-1<a≤2.
∴实数a的取值范围是(-1,2].
故选:C.

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且AS=9,BS=8,CD=34,
(1)当S在α,β之间时,CS长多少?
(2)当S不在α,β之间时,CS长又是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{a}$•$\overrightarrow{b}$=10,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知以点C为圆心的圆经过点A(0,1)和B(4,3),且圆心在直线3x+y-15=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面是直角梯形的四棱锥P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求证:BC⊥平面PAB;
(2)求面PCD与面PAB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2$\sqrt{2}$ cm2,则原平面图形的面积为(  )
A.4 cm2B.4$\sqrt{2}$ cm2C.8 cm2D.8$\sqrt{2}$ cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量 $\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,m).若 ($\overrightarrow{a}$+2$\overrightarrow{b}$)∥(3$\overrightarrow{b}$-$\overrightarrow{a}$),则实数 m 的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,若3cos(B-C)-2=6cosBcosC.
(1)求cosA的值;
(2)若a=$\sqrt{5}$,△ABC的面积为$\sqrt{5}$,求b,c边长.

查看答案和解析>>

同步练习册答案