精英家教网 > 高中数学 > 题目详情
12.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是(  )
A.m≤-1B.m<-1C.m≤-2015D.m<-2015

分析 根据指数函数的图象和性质进行求解即可.

解答 解:函数g(x)=2015x+m为增函数,
若g(x)=2015x+m图象不过第二象限,
则满足g(0)≤0,
即g(0)=1+m≤0,
则m≤-1,
故选:A.

点评 本题主要考查指数函数的图象和性质,根据条件建立不等式关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|ax2-2x+1|,x∈[0,4].
(1)当a<0时,求f(x)≥$\frac{1}{2}$的解集;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α,β,λ是一个三角形的三个内角,有下列式子:
①sin(α+β)-sinλ
②cos(α+β)+cosλ
③cos(α+β)-cosλ
④tan(α+β)-tanλ
⑤tan(α+β)+tanλ
⑥tan$\frac{α+β}{2}$tan$\frac{λ}{2}$.
其中,值为常数的式子的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x的不等式a•4x+2x+1>0恒成立,常数a的取值范围[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+alnx.
(Ⅰ)当a=-2时,求函数f(x)的单调区间和极值;
(Ⅱ)若g(x)=f(x)+$\frac{2}{x}$在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}$,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,则|$\overrightarrow{c}$|的最大值是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点、左焦点分别为A、F,点B(0,-b),若|$\overrightarrow{BA}+\overrightarrow{BF}|=|\overrightarrow{BA}-\overrightarrow{BF|}$,则双曲线的离心率值为$\frac{{\sqrt{5}+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,在(-∞,0)上单调递增的是(  )
A.y=|x|B.y=log2|x|C.$y={|x|^{\frac{1}{2}}}$D.y=0.5|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:函数f(x)=$\frac{{2}^{x}-{2}^{-x}}{2}$,g(x)=$\frac{{2}^{x}+{2}^{-x}}{2}$.
(1)求证:f(x+y)=f(x)g(y)+f(y)g(x);
(2)试讨论函数g(x)的奇偶性与单调性.

查看答案和解析>>

同步练习册答案