精英家教网 > 高中数学 > 题目详情

【题目】由四棱柱截去三棱锥后得到的几何体如图所示,四边形是边长为的正方形,的交点,的中点,平面

)证明:平面

)若直线与平面所成的角为,求线段的长.

【答案】)证明见解析;(.

【解析】

)取的中点,连接,证明四边形为平行四边形,可得出,再利用线面平行的判定定理可证明出平面

)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,计算出平面的一个法向量,利用直线与平面所成的角为,计算出的值,进而得解.

)取的中点,连接

由于为四棱柱,所以,

四边形为平行四边形,则

分别为的中点,所以,且

因此四边形为平行四边形,所以

平面平面,所以平面

)如图,建立空间直角坐标系,设

易知,从而可得

设平面的法向量为

,故有,解得

可取

由题意得

解得,即线段的长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线的焦点为,准线与轴的交点为.过点的直线与抛物线相交于两点,分别与轴相交于两点,当轴时,

1)求抛物线的方程;

2)设的面积为面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:

1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;

2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

会员等级

消费金额

普通会员

2000

银卡会员

2700

金卡会员

3200

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 .

方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .

以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中为自然对数的底数).

1)讨论函数的单调性;

2)当时,函数有最小值,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率与双曲线的离心率互为倒数,分别为椭圆的左、右顶点,且.

1)求椭圆的方程;

2)已知过左顶点的直线与椭圆另交于点,与轴交于点,在平面内是否存在一定点,使得恒成立?若存在,求出该点的坐标,并求面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点C的左、右焦点,过的直线lC交于AB两点,且的周长为

1)求C的方程;

2)若,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,曲线在点处的切线与直线平行,求的值;

2)若,且函数的值域为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知衡量病毒传播能力的最重要指标叫做传播指数RO.它指的是,在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数.它的简单计算公式是:确认病例增长率系列间隔,其中系列间隔是指在一个传播链中,两例连续病例的间隔时间(单位:天).根据统计,确认病例的平均增长率为,两例连续病例的间隔时间的平均数为天,根据以上RO数据计算,若甲得这种传染病,则轮传播后由甲引起的得病的总人数约为(

A.B.C.D.

查看答案和解析>>

同步练习册答案