精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C的对边分别是a,b,c,已知a2+b2=2012c2,求证
2sinAsinBcosC
sin2(A+B)
为定值.
考点:余弦定理,正弦定理
专题:解三角形
分析:利用余弦定理表示出cosC,把已知等式代入得到关系式,记作①,利用正弦定理化简,整理即可得出所求式子结果为定值.
解答: 证明:∵a2+b2=2012c2
∴cosC=
a2+b2-c2
2ab
=
2012c2-c2
2ab
=
2011c2
2ab
,即2abcosC=2011c2,①
由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,得到a=2RsinA,b=2RsinB,c=2RsinC,
代入①得:2•2RsinA•2RsinBcosC=2011•4R2sin2C,即2sinAsinBcosC=2011sin2C=2011sin2(A+B),
2sinAsinBcosC
sin2(A+B)
=2011.
点评:此题考查了余弦定理,正弦定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知角α的顶点与点O重合,始边与x轴的非负半轴重合,终边上一点M的坐标为(
3
,1),则cos(α+
π
3
)的值是(  )
A、-0.5B、0C、0.5D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列a,b,5a,7,3b,…c成等差数列,且a+b+5a+7+3b+…+c=2500,求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
x+
1
2
,h(x)=
x
,设n∈N*,证明:f(n)h(n)-[h(1)+h(2)+…+h(n)]
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个命题p、q,其中p:?x∈R,不等式x2+2x-1>0恒成立;q:当
3
4
<a<1时,函数f(x)=(4a-3)x在R上为减函数,则下列命题为真命题的是(  )
A、p∧qB、¬p∧¬q
C、¬p∧qD、p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(10,-5),
b
=(3,2),
c
=(-2,2),试用
b
c
表示
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,i为虚数单位,若a-i=2+bi,则(a+bi)2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA并交BA的延长线于点F.
(Ⅰ)求证:∠EFD=∠DAE;
(Ⅱ)求证:AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,AB,AC的长度均为1,它们的夹角为60°,则|
AB
+2
CA
|=
 

查看答案和解析>>

同步练习册答案