相关习题
 0  226181  226189  226195  226199  226205  226207  226211  226217  226219  226225  226231  226235  226237  226241  226247  226249  226255  226259  226261  226265  226267  226271  226273  226275  226276  226277  226279  226280  226281  226283  226285  226289  226291  226295  226297  226301  226307  226309  226315  226319  226321  226325  226331  226337  226339  226345  226349  226351  226357  226361  226367  226375  266669 

科目: 来源: 题型:选择题

10.A={x|x2-4x-5≤0},B={x||x|≤2},则A∩(∁RB)=(  )
A.[2,5]B.(2,5]C.[-1,2]D.[-1,2)

查看答案和解析>>

科目: 来源: 题型:选择题

9.复数$\frac{2-i}{1-i}$的共轭复数是(  )
A.$\frac{3+i}{2}$B.$\frac{1-i}{2}$C.$\frac{3-i}{2}$D.$\frac{-3-i}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.己知圆C过椭圆$\frac{{x}^{2}}{2}+{y}^{2}$=1的右焦点,且圆心在x的正半轴上,且直线l:y=x-1被圆C截得的弦长为2$\sqrt{2}$.
(1)求圆C的标准方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为原点,且有|PM|=|PO|,求使|PM|最小的P点的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

7.不等式|x+3|+|x-1|<a2-3a有解的实数a的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目: 来源: 题型:解答题

6.椭圆C1与C2的中心在原点,焦点分别在x轴与y轴上,它们有相同的离心率$e=\frac{{\sqrt{2}}}{2}$,并且C2的短轴为C1的长轴,C1与C2的四个焦点构成的四边形面积是$2\sqrt{2}$.
(Ⅰ)求椭圆C1与C2的方程;
(Ⅱ)设P是椭圆C2上非顶点的动点,P与椭圆C1长轴两个顶点A,B的连线PA,PB分别与椭圆C1交于点E,F.
(1)求证:直线PA,PB斜率之积为常数;
(2)直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

5.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上的两个动点,O是坐标原点,且AO⊥BO,作OP⊥AB,垂足为P,则|OP|=(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.若实数数列:1,a1,a2,a3,81成等比数列,则圆锥曲线${x^2}+\frac{y^2}{a_2}=1$的离心率是(  )
A.$\sqrt{10}$ 或$\frac{{2\sqrt{2}}}{3}$B.$\sqrt{10}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{1}{3}$或$\sqrt{10}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{2}$),离心率为$\frac{\sqrt{6}}{3}$,点O为坐标原点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)过左焦点F任作一直线l,交椭圆E于P、Q两点.
  (i)求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范围;
  (ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM于点N,证明:点N在一条定直线上.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,则实数m=12.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,1),离心率为 $\frac{\sqrt{3}}{2}$,点O为坐标原点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设不与坐标轴平行的直线l1:y=kx+m与椭圆交于A,B两点,与x轴交于点P,设线段AB中点为M.
  (i)证明:直线OM的斜率与直线l1的斜率之积为定值;
  (ii)如图,当m=-k时,过点M作垂直于l1的直线l2,交x轴于点Q,求$\frac{|AB|}{|PQ|}$的取值范围.

查看答案和解析>>

同步练习册答案