相关习题
 0  234266  234274  234280  234284  234290  234292  234296  234302  234304  234310  234316  234320  234322  234326  234332  234334  234340  234344  234346  234350  234352  234356  234358  234360  234361  234362  234364  234365  234366  234368  234370  234374  234376  234380  234382  234386  234392  234394  234400  234404  234406  234410  234416  234422  234424  234430  234434  234436  234442  234446  234452  234460  266669 

科目: 来源: 题型:填空题

18.已知全集U={-2,-1,0,1,2,3},M={-1,0,1,3},N={-2,0,2,3},则(∁UM)∩N为{-2,2}.

查看答案和解析>>

科目: 来源: 题型:填空题

17.函数y=3-4sin x-cos2x的最大值7和最小值-1.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设数列{an}是集合{3s+3t|0≤s<t,且s,t∈Z}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如图等腰直角三角形数表,a200的值为(  )
A.39+319B.310+319C.319+320D.310+320

查看答案和解析>>

科目: 来源: 题型:填空题

15.下列命题中,正确命题的序号为②.
①常数列既是等差数列,又是等比数列; 
②两个变量的相关系数的绝对值越接近于1,它们的相关性越强.
③回归直线方程=$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点.
④函数y=sin2x+$\frac{4}{si{n}^{2}x}$(x≠kπ)最小值是4.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,椭圆的离心率为$\frac{2}{3}$.如果|AB|=$\frac{15}{4}$,求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.求极限$\underset{lim}{n→∞}$n($\frac{1}{{n}^{2}+1}$+$\frac{1}{{n}^{2}+2}$+…+$\frac{1}{{n}^{2}+n}$)

查看答案和解析>>

科目: 来源: 题型:填空题

12.直线(k+1)x-(2k-1)y+3k=0恒过定点(-1,1).

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知焦点在x轴上的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1,其离心率为$\frac{1}{2}$,过椭圆左焦点F1与上顶点B的直线为l0
(1)求椭圆的方程及直线l0的方程;
(2)直线l:y=kx(k≠0)与椭圆C交于M,N两点,点P是椭圆上异于M,N的一点.
①求证:当直线PM,PN存在斜率时,两直线的斜率之积为定值,即kPM•kPN为定值;
②当直线l与点P满足什么条件时,△PMN有最大面积?并求此最大面积.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若函数f(x)=sinx-cosx+ax+1,x∈[0,2π]的图象与直线x=0,x=π,y=0所围成的封闭图形的面积为$\frac{1}{2}$π2+π+2.
(1)求a的值;
(2)求函数f(x)单调区间及最值;
(3)求函数g(x)=f(x)-m在区间x∈[0,2π]上的零点个数.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=|2x-1|+|x-a|.
(1)当a=2时,解不等式:f(x)≤x+3
(2)当x,y∈Z,则称点P(x,y)为平面上单调格点;若(2x,y)或(x,2y)为格点,则称点P(x,y)为半格点.设Q={(x,y)|$\left\{\begin{array}{l}{0≤x≤2}\\{0≤x≤3}\end{array}\right.$},A={(x,y)|f(x)≤y≤3,a=2}.
①求从区域Ω中任取一点P,而该点落在区域A上的概率;
②求从区域Ω中的所有格点或半格点中任取一点P,而该点是区域A上的格点或半格点的概率.

查看答案和解析>>

同步练习册答案