相关习题
 0  246770  246778  246784  246788  246794  246796  246800  246806  246808  246814  246820  246824  246826  246830  246836  246838  246844  246848  246850  246854  246856  246860  246862  246864  246865  246866  246868  246869  246870  246872  246874  246878  246880  246884  246886  246890  246896  246898  246904  246908  246910  246914  246920  246926  246928  246934  246938  246940  246946  246950  246956  246964  266669 

科目: 来源: 题型:解答题

18.已知抛物线C1:y2=2px上一点M(3,y0)到其焦点F的距离为4;椭圆C2:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{2}}}{2}$,且过抛物线的焦点F.
(Ⅰ)求抛物线C1和椭圆C2的标准方程;
(Ⅱ)过点F的直线l1交抛物线C1于A、B两不同点,交y轴于点N,已知$\overrightarrow{NA}=λ\overrightarrow{AF},\overrightarrow{NB}=μ\overrightarrow{BF}$,求证:λ+μ为定值.
(Ⅲ)直线l2交椭圆C2于P,Q两不同点,P,Q在x轴的射影分别为P′,Q′,$\overrightarrow{OP}•\overrightarrow{OQ}+\overrightarrow{OP'}•\overrightarrow{OQ'}$+1=0,若点S满足:$\overrightarrow{OS}=\overrightarrow{OP}+\overrightarrow{OQ}$,证明:点S在椭圆C2上.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,则|QF|=(  )
A.$\frac{5}{2}$B.$\frac{8}{3}$C.3D.6

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=(x-a)2ex,g(x)=x3-x2-3,其中a∈R.
(1)若存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求实数M的最大值;
(2)若对任意的s,t∈[0,2],都有f(s)≥g(t),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任意一点到两焦点F1,F2距离之和为4$\sqrt{2}$,离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的标准方程;
(2)若直线l的斜率为$\frac{1}{2}$,直线l与椭圆C交于A,B两点.点P(2,1)为椭圆上一点,求△PAB的面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,点C是圆O的直径BE的延长线上一点,AC是圆O的切线,A是切点,∠ACB的平分线CD与AB相交于点D,与AE相交于点F.
(1)求∠ADF的值;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.某校对数学、物理两科进行学业水平考前辅导,辅导后进行测试,按成绩(满分100分)划分为合格(成绩大于或等于70分)和不合格(成绩小于70分).现随机抽取两科各100名学生的成绩统计如下:
成绩(单位:分)[50,60)[60,70)[70,80)[80,90)[90,100]
数学81240328
物理71840296
(1)试分别估计该校学生数学、物理合格的概率;
(2)数学合格一人可以赢得4小时机器人操作时间,不合格一人则减少1小时机器人操作
时间;物理合格一人可赢得5小时机器人操作时间,不合格一人则减少2小时机器人操作时间.在(1)的前提下,
(i)记X为数学一人和物理一人所赢得的机器人操作时间(单位:小时)总和,求随机变量X 的分布列和数学期望;
(ii)随机抽取5名学生,求这5名学生物理考前辅导后进行测试所赢得的机器人操作时间不少于14小时的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知0<x1<x2<x3,a=$\frac{{{{log}_2}(2{x_1}+2)}}{x_1},b=\frac{{{{log}_2}(2{x_2}+2)}}{x_2},c=\frac{{{{log}_2}(2{x_3}+2)}}{x_3}$,则a、b、c的大小关系为(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目: 来源: 题型:填空题

11.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为30;20.

查看答案和解析>>

科目: 来源: 题型:选择题

10.将1~9这9个数平均分成3组,则每组的3个数都成等差数列的分组方法的种数是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目: 来源: 题型:填空题

9.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$,则$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案