相关习题
 0  246795  246803  246809  246813  246819  246821  246825  246831  246833  246839  246845  246849  246851  246855  246861  246863  246869  246873  246875  246879  246881  246885  246887  246889  246890  246891  246893  246894  246895  246897  246899  246903  246905  246909  246911  246915  246921  246923  246929  246933  246935  246939  246945  246951  246953  246959  246963  246965  246971  246975  246981  246989  266669 

科目: 来源: 题型:选择题

7.已知两条直线l1:y=m和l2:y=$\frac{4}{m+1}$(m>0),l1与函数y=|log2x|的图象由左到右相交于点A,B,l2 与函数y=|log2x|的图象由左到右相交于点C,D,记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,$\frac{b}{a}$的最小值是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目: 来源: 题型:选择题

6.设F1、F2是椭圆x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF1|=3|F1B|,且AF2⊥x轴,则b2=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.设△ABC的内角A,B,C所对边的长分别为a,b,c,若a=1,c=4$\sqrt{2}$且△ABC的面积为2,则sinC=(  )
A.$\frac{4}{41}$B.$\frac{4}{5}$C.$\frac{4}{25}$D.$\frac{4\sqrt{41}}{41}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知角α终边与单位圆x2+y2=1的交点为$P(\frac{1}{2},y)$,则$sin(\frac{π}{2}+2α)$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦点为F1(-1,0).
(Ⅰ)设椭圆M与函数$y=\sqrt{x}$的图象交于点P,若函数$y=\sqrt{x}$在点P处的切线过椭圆的左焦点F1,求椭圆的离心率;
(Ⅱ)设过点F1且斜率不为零的直线l交椭圆于A、B两点,连结AO(O为坐标原点)并延长,交椭圆于点C,若椭圆的长半轴长a是大于1的给定常数,求△ABC的面积的最大值S(a).

查看答案和解析>>

科目: 来源: 题型:解答题

2.在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B-ADEC,且F为棱BC中点,$BA=\sqrt{2}$.
(Ⅰ)求证:EF⊥平面BAC;
(Ⅱ)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.现有4名学生参加演讲比赛,有A、B两个题目可供选择.组委会决定让选手通过掷一枚质地均匀的骰子选择演讲的题目,规则如下:选手掷出能被3整除的数则选择A题目,掷出其他的数则选择B题目.
(Ⅰ)求这4个人中恰好有1个人选择B题目的概率;
(Ⅱ)用X、Y分别表示这4个人中选择A、B题目的人数,记ξ=X•Y,求随机变量ξ的分布列与数学期望E(ξ).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=2cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{4}$个单位后得到y=g(x)的图象,且y=g(x)在区间$[0,\frac{π}{4}]$内的最大值为$\sqrt{2}$.
(Ⅰ)求实数m的值;
(Ⅱ)在△ABC中,内角A、B、C的对边分别是a、b、c,若$g(\frac{3}{4}B)=1$,且a+c=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

19.在直角坐标平面内,曲线C的参数方程为$\left\{\begin{array}{l}x=rcosα\\ y=rsinα\end{array}\right.$(r>0,α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A、B的极坐标分别为$(2\;,\;\frac{2π}{3})$、(2,π),若直线AB和曲线C只有一个公共点,则r=$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),且过点(-1,$\frac{3}{2}$),右顶点为A,经过点F的动直线l与椭圆交于B,C两点.
(1)求椭圆方程;
(2)记△AOB和△AOC的面积分别为S1和S2,求|S1-S2|的最大值;
(3)在x轴上是否存在一点T,使得点B关于x轴的对称点落在直线TC上?若存在,则求出T点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案