相关习题
 0  246805  246813  246819  246823  246829  246831  246835  246841  246843  246849  246855  246859  246861  246865  246871  246873  246879  246883  246885  246889  246891  246895  246897  246899  246900  246901  246903  246904  246905  246907  246909  246913  246915  246919  246921  246925  246931  246933  246939  246943  246945  246949  246955  246961  246963  246969  246973  246975  246981  246985  246991  246999  266669 

科目: 来源: 题型:选择题

7.已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是AB、AD的中点,点P,Q分别在棱A1B1、A1D1上,且A1P=A1Q=x(0<x<1),设平面MEF∩平面MPQ=l,则下列结论中错误的是(  )
A.l∥平面ABCD
B.l⊥AC
C.存在x0∈(0,1),使平面MEF与平面MPQ垂直
D.当x变化时,l是定直线

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图空间四边形ABCD中,$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,∠DAB=60°,$\overrightarrow{DA}$•$\overrightarrow{BC}$=-$\frac{1}{2}$,且|$\overrightarrow{DA}$|=|$\overrightarrow{AB}$|=|$\overrightarrow{BC}$|=1,则|$\overrightarrow{DC}$|=(  )
A.2B.3C.1D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知实数x,y满足约束条件:$\left\{\begin{array}{l}{x-y+1≥0}\\{y≥-x+3}\\{y≥0}\end{array}\right.$,设z=y-2x,则z(  )
A.有最大值0B.最大值2C.最小值0D.最小值-6

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,已知点S(-2,0)和圆O:x2+y2=4,ST是圆O的直径,从左到右M、O和N依次是ST的四等分点,P(异于S,T)是圆O上的动点,PD⊥ST,交ST于D,$\overrightarrow{PE}$=λ$\overrightarrow{ED}$,直线PS与TE交于C,|CM|+|CN|为定值.
(1)求点C的轨迹曲线Γ的方程及λ的值;
(2)设n是过原点的直线,直线l与n垂直相交于Q点,l与轨迹Γ相交于A,B两点,且|$\overrightarrow{OQ}$|=1.是否存在直线l,使$\overrightarrow{AQ}$•$\overrightarrow{QB}$=1成立?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an(n∈N*).
(1)求a1的值及数列{an}的通项公式;
(2)记数列{$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$}的前n项和为Tn,求证:Tn<$\frac{9}{32}$(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知数列{an}是公比为$\frac{1}{2}$的等比数列,数列{bn}满足a1=$\sqrt{2}$b1=1,且an+12=$\frac{({a}_{n}+{b}_{n})^{2}}{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=1+$\frac{{b}_{n}}{{a}_{n}}$,n∈N+,若cn=$\frac{{{b}_{n}}^{2}}{{{a}_{n}}^{2}}$;
(1)求证:数列{cn}是等差数列,并求出{cn}的通项公式;
(2)记数列{cn}的前n项和为Sn,若对于?n∈N+,不等式$\sum_{i=1}^{n}$ai$\sqrt{{S}_{i}}$≤k-$\frac{\sqrt{2}n}{{2}^{n}}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB=$\sqrt{2}$,F为CE上的点,且BF⊥CE,G为AC中点.
(Ⅰ)求证:AC⊥平面BGF;
(Ⅱ)求二面角B-AC-E的平面角正弦的大小;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知在△ABC中,角A,B,C所对的边分别为a,b,c,b(b-$\sqrt{3}$c)=(a-c)(a+c),且∠B为钝角.
(Ⅰ)求角A的大小,并求出角C的范围;
(Ⅱ)若a=$\frac{1}{2}$,求b-$\sqrt{3}$c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图:在三棱锥P-ABC中,AB=AC=2$\sqrt{10}$,BC=4,PC=2$\sqrt{11}$,点P在平面ABC内的射影恰为△ABC的重心G,M为侧棱AP上一动点.
(1)求证:平面PAG⊥平面BCM;
(2)当M为AP中点时,求三棱锥M-PGC的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cosC+c=2b,则△ABC的周长的最大值是3.

查看答案和解析>>

同步练习册答案