相关习题
 0  246887  246895  246901  246905  246911  246913  246917  246923  246925  246931  246937  246941  246943  246947  246953  246955  246961  246965  246967  246971  246973  246977  246979  246981  246982  246983  246985  246986  246987  246989  246991  246995  246997  247001  247003  247007  247013  247015  247021  247025  247027  247031  247037  247043  247045  247051  247055  247057  247063  247067  247073  247081  266669 

科目: 来源: 题型:选择题

17.若全集U={x∈R|x2≤4},A={x∈R|-2≤x≤0},则∁UA=(  )
A.(0,2)B.[0,2)C.(0,2]D.[0,2]

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=$\overrightarrow{m}$.$\overrightarrow{n}$,且$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)相邻两对称轴的距离大于等于$\frac{π}{2}$.
(1)求ω的取值范围;
(2)在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,当ω最大时,f(A)=1,且a=$\sqrt{3}$,求c+b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.为普及高中生安全逃生知识与安全防护能力,雅礼中学高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)9x
[70,80)y0.38
[80,90)160.32
[90,100)zs
合   计p1
(1)求出上表中的x,y,z,s,p的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一1401班恰有甲、乙两名同学取得决赛资格.记高一1401班在决赛中进入前三名的人数为X,求X的分布列和数学期望.(我们认为决赛中各选手的水平相当,获得各名次的机会均等)

查看答案和解析>>

科目: 来源: 题型:填空题

14.若关于x的不等式|x+1|+|x-3|≥m的解集为R,则m的取值范围为(-∞,4].

查看答案和解析>>

科目: 来源: 题型:填空题

13.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosa\\ y=sina\end{array}\right.$(a为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθ=4.设P为曲线C1上的动点,则点P到C2上点的距离的最小值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知函数f(x)=aln(x+1)-x2在区间(1,2)内任取两个实数p,q,且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}<1$恒成立,则实数a的取值范围为(  )
A.a≤15B.0<a≤15C.a>6D.a<-3

查看答案和解析>>

科目: 来源: 题型:选择题

11.复数$\frac{3+2i}{1-i}$=(  )
A.$\frac{1}{2}+\frac{5}{2}i$B.$\frac{1}{2}-\frac{5}{2}i$C.$-\frac{1}{2}+\frac{5}{2}i$D.$-\frac{1}{2}-\frac{5}{2}i$

查看答案和解析>>

科目: 来源: 题型:解答题

10.某公司原有10名职工,每名职工年薪5万元,由于业务扩大,计划从今年起,职工的年薪每年比上一年增加10%,同时每年新招收3名职工,每名新职工第一年年薪为4万元,第二年的年薪开始和这个公司的原有职工的年薪按同样的百分比增加,第n年这个公司的工资总额将是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

9.在极坐标系中,以C(1,π)为圆心,经过点P($\sqrt{2}$,$\frac{3π}{4}$)的圆C的极坐标方程为ρ=-2cosθ.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=ln(1+x)(x>0).
(Ⅰ)证明:$\frac{x}{1+x}<f(x)$;
(Ⅱ)比较20152013与20142014的大小;
(Ⅲ)给定正整数n(n>2015),n个正实数x1,x2,…,xn满足x1+x2+…+xn=1,
证明:${(\frac{{{x_1}^2}}{{1+{x_1}}}+\frac{{{x_2}^2}}{{1+{x_2}}}+…+\frac{{{x_n}^2}}{{1+{x_n}}})^{2015}}>{(\frac{1}{2016})^n}$.

查看答案和解析>>

同步练习册答案