相关习题
 0  247296  247304  247310  247314  247320  247322  247326  247332  247334  247340  247346  247350  247352  247356  247362  247364  247370  247374  247376  247380  247382  247386  247388  247390  247391  247392  247394  247395  247396  247398  247400  247404  247406  247410  247412  247416  247422  247424  247430  247434  247436  247440  247446  247452  247454  247460  247464  247466  247472  247476  247482  247490  266669 

科目: 来源: 题型:填空题

7.已知sin($\frac{π}{3}$-α)=$\frac{3}{5}$,则cos($α+\frac{π}{6}$)=$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

6.函数f(x)=Asin(ωx+φ)(A>0,ω>0)在R上的部分图象如图所示,则ω的值为$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.三个互不相等的实数成等差数列,适当交换这三个是的位置后,变成一个等比数列,则此等比数列的公比组成的集合为{$-\frac{1}{2}$,-2}.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知$α∈(\frac{3π}{2},2π)$,cosα=$\frac{4}{5}$,则cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.函数f(x)=$\frac{x}{\sqrt{1-{2}^{x-1}}}$的定义域为{x|x<1}.

查看答案和解析>>

科目: 来源: 题型:填空题

2.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的离心率为$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在直角坐标系xOy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}}\right.$(θ为参数).已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知p:不等式|x+1|+|x-2|>m的解集为R;q:f(x)=log(5-2m)x为减函数,则p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

19.设向量$\overrightarrow{OA}$=(a,cos2x),$\overrightarrow{OB}$=(1+sin2x,1),x∈R,函数f(x)=$|\begin{array}{l}{\overrightarrow{OA}}\\{\;}\end{array}|$•$|\begin{array}{l}{\overrightarrow{OB}}\\{\;}\end{array}|$cos∠AOB
(Ⅰ)当y=f(x)的图象经过点($\frac{π}{4}$,2)时,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若x为锐角,当sin2x=sin($\frac{π}{4}$+α)•sin($\frac{π}{4}$-α)+$\frac{1-cos2α}{2}$时,求△OAB的面积;
(Ⅲ)在(Ⅰ)的条件下,记函数h(x)=f(x+t)(其中实数t为常数,且0<t<π).若h(x)是偶函数,求t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这件服装件数x之间的一组数据关系如表所示:
x3456789
y66697381899091
已知:$\sum_{i-1}^{7}$xi2=280,$\sum_{i-1}^{7}$xiyi=3487,$\widehat{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$
(Ⅰ)求$\overrightarrow{x}$,$\overrightarrow{y}$;
(Ⅱ)若纯利y与每天销售件数x之间的回归直线方程;
(Ⅲ)若该周内某天销售服装20件,估计可获纯利多少元?

查看答案和解析>>

同步练习册答案