相关习题
 0  247722  247730  247736  247740  247746  247748  247752  247758  247760  247766  247772  247776  247778  247782  247788  247790  247796  247800  247802  247806  247808  247812  247814  247816  247817  247818  247820  247821  247822  247824  247826  247830  247832  247836  247838  247842  247848  247850  247856  247860  247862  247866  247872  247878  247880  247886  247890  247892  247898  247902  247908  247916  266669 

科目: 来源: 题型:填空题

11.设函数f(x)=$\frac{1-a}{2}$x2+ax-lnx(a>1).若对任意的a∈(3,4)和任意的x1,x2∈[1,2],恒有$\frac{{a}^{2}-1}{2}$m+ln2>|f(x1)-f(x2)|成立,则实数m的取值范围是m≥$\frac{1}{15}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在扇形AOB中,圆心角等于$\frac{π}{3}$,半径为4,在弧AB上有一动点P(不与点AB重合),过点P引平行于OB的直线和OA交于点C,设∠AOP=θ,求三角形POC的面积的最大值及此时θ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知不等式f(x)=3$\sqrt{2}$sin$\frac{x}{4}$cos$\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$-m≤0,对于任意的-$\frac{5π}{6}$≤x≤$\frac{π}{6}$恒成立,则实数m的取值范围是$({\sqrt{3},+∞})$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知锐角α,β满足sinα=$\frac{2\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,则α+β=(  )
A.$\frac{π}{4}$B.$\frac{3}{4}$πC.$\frac{π}{4}$或$\frac{3}{4}$πD.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1)${\;}^{\frac{m}{2}}$<(3-2a)${\;}^{\frac{m}{2}}$的实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人作为样本,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本100人中抽取日平均生产件数[60,70)的工人,求“25周岁以上组”和“25周岁以下组”工人的各抽取多少人?
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图是一个由圆、三角形、矩形组成的组合图,现用红黄两种颜色为其涂色,每个图形只涂一色,则三个颜色不全相同的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.在数列{an}中,a1+a2+…+an=2an-1,且数列{bn}满足b1+2b2+3b3+…+nbn=an(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若数列{an}满足a1a2a3…an=n2+3n+2,在数列{an}的通项公式为an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=|x-1|+|x-a|.
(1)若a=2,解不等式f(x)≤2;
(2)若对任意的x∈R,恒有f(x)≥2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案