相关习题
 0  248234  248242  248248  248252  248258  248260  248264  248270  248272  248278  248284  248288  248290  248294  248300  248302  248308  248312  248314  248318  248320  248324  248326  248328  248329  248330  248332  248333  248334  248336  248338  248342  248344  248348  248350  248354  248360  248362  248368  248372  248374  248378  248384  248390  248392  248398  248402  248404  248410  248414  248420  248428  266669 

科目: 来源: 题型:解答题

5.已知函数f(x)=|x-2|+|2x-1|.
(1)解不等式f(x)<2;
(2)若不等式f(x)<a(a∈R)的解集为空集,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,都满足f(a•b)=af(b)+bf(a),若f($\frac{1}{2}$)=1,an=$\frac{f({2}^{-n})}{n}$.
(1)求f($\frac{1}{4}$)、f($\frac{1}{8}$)、f($\frac{1}{16}$)的值;
(2)猜测数列{an}通项公式,并用数学归纳法证明.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设等差数列{an}的前n项和为Sn,且a2+a16=34,S4=16.数列{bn}的前n项和为Tn,满足Tn+bn=1.
(1)求数列{an}的通项公式;
(2)写出一个正整数m,使得$\frac{1}{{{a_m}+9}}$是数列{bn}的项;
(3)设数列{cn}的通项公式为cn=$\frac{a_n}{{{a_n}+t}}$,问:是否存在正整数t和k(k≥3),使得c1,c2,ck成等差数列?若存在,请求出所有符合条件的有序整数对(t,k);若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.设数列{an},{bn}满足a1=b1=6,a2=b2=4,且数列{an-$\frac{n^2}{2}$}(n∈N*)是等差数列,数列{bn-2}(n∈N*)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,$\frac{1}{2}$),若存在,求出k,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)(x∈R).
(1)求函数f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若x∈[0,2π]时,求函数f(x)的零点.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知π<α<$\frac{3}{2}$π,sinα=-$\frac{4}{5}$,求下列各式的值:
(1)$\frac{{2{{sin}^2}α+sin2α}}{cos2α}$;
(2)tan(α-$\frac{5}{4}$π).

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}$≤$\frac{{n+8•{{(-1)}^n}}}{2n}$对任意的n∈N+恒成立,则实数λ的最大值为$-\frac{21}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到两焦点的距离和为$\frac{2}{3}$,短轴长为$\frac{1}{2}$,直线l与椭圆C交于M,N两点.
(Ⅰ)求椭圆C方程;
(Ⅱ)若直线MN与圆O:x2+y2=$\frac{1}{25}$相切,证明:∠MON为定值;
(Ⅲ)在(Ⅱ)的条件下,求|OM||ON|的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,O坐标原点,以OF直径的圆与双曲线的一条渐近线相交于O,A两点,且|OA|=2|AF|,则双曲线的离心率等于(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{3}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知F为抛物线y2=x的焦点,点A、B在该抛物线上且位于x轴两侧,$\overrightarrow{OA}$$•\overrightarrow{OB}$=6(O为坐标原点),则△ABO与△AOF面积之和的最小值为(  )
A.4B.$\frac{3\sqrt{13}}{2}$C.$\frac{17\sqrt{2}}{4}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案