相关习题
 0  249932  249940  249946  249950  249956  249958  249962  249968  249970  249976  249982  249986  249988  249992  249998  250000  250006  250010  250012  250016  250018  250022  250024  250026  250027  250028  250030  250031  250032  250034  250036  250040  250042  250046  250048  250052  250058  250060  250066  250070  250072  250076  250082  250088  250090  250096  250100  250102  250108  250112  250118  250126  266669 

科目: 来源: 题型:解答题

8.我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得$\frac{{f({x_1})+f({x_2})}}{2}$=C,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(Ⅰ)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:是.是(填“是”或“否”)如果是,写出它的一个“和谐数”:2.
(Ⅱ)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,$\frac{3}{2}$是其“和谐数”;
证明过程如下:对任意x1∈[10,100],令$\frac{{g({x_1})+g({x_2})}}{2}=\frac{3}{2}$,即$\frac{{lg{x_1}+lg{x_2}}}{2}=\frac{3}{2}$,
得x2=$\frac{1000}{x_1}$.∵x1∈[10,100],∴x2=$\frac{1000}{x_1}$∈[10,100].
即对任意x1∈[10,100],存在唯一的x2=$\frac{1000}{x_1}$∈[10,100],使得$\frac{{g(x)+g({x_2})}}{2}=\frac{3}{2}$.
∴g(x)=lgx为“和谐函数”,其“和谐数”为$\frac{3}{2}$.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”,5是其“和谐数”;
[证明]:
(Ⅲ)判断函数u(x)=x2,x∈R是否为和谐函数,并作出证明.

查看答案和解析>>

科目: 来源: 题型:填空题

7.记定义在R上的函数f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x+lnx在区间[e,e2]上的“中值点”为e2-2.

查看答案和解析>>

科目: 来源: 题型:选择题

6.将函数f(x)=$sin(2x-\frac{π}{4})$向右平移$\frac{3π}{8}$个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与x=-$\frac{π}{2}$,x=$\frac{π}{3}$,x轴围成的图形面积为(  )
A.$\frac{5}{2}$B.$1+\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.$1-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2-2x(x∈R)是单函数;②函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥2}\\{2-x,x<2}\end{array}\right.$是单函数;③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是③(写出所有真命题的编号).

查看答案和解析>>

科目: 来源: 题型:选择题

4.直线Ax+By+C=0与圆x2+y2=4相交于两点M、N,若满足C2=A2+B2,则$\overrightarrow{OM}$•$\overrightarrow{ON}$(O为坐标原点)等于(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

3.计算i(1-i)2的值等于(  )
A.4B.2C.-2iD.4i

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)是定义在足上的奇函数,它的图象关于直线x=l对称,且f(x)=x(0<x≤1).若函数 y=f(x)-$\frac{1}{x}$-a以在区间[-10,10]上有10个零点(互不相同),则实数口的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.点P在△ABC内部(包含边界),|AC|=3,|AB|=4,|BC|=5,点P到三边的距离分别是d1,d2,d3,则d1+d2+d3的取值范围是[$\frac{12}{5}$,4].

查看答案和解析>>

科目: 来源: 题型:选择题

20.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条渐近线与抛物线y2=x的一个交点的横坐标为x0,若x0>1,则双曲线C的离心率e的取值范围是(  )
A.(1,$\frac{\sqrt{6}}{2}$)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\frac{\sqrt{6}}{2}$,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

19.点P是曲线y=x2-1nx上任意一点,则点P到直线y=x-2的距离的最小值是(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案