相关习题
 0  250786  250794  250800  250804  250810  250812  250816  250822  250824  250830  250836  250840  250842  250846  250852  250854  250860  250864  250866  250870  250872  250876  250878  250880  250881  250882  250884  250885  250886  250888  250890  250894  250896  250900  250902  250906  250912  250914  250920  250924  250926  250930  250936  250942  250944  250950  250954  250956  250962  250966  250972  250980  266669 

科目: 来源: 题型:选择题

1.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(3)=0,则使得$f({log_{\frac{1}{3}}}x)<0$的x的范围为(  )
A.(-3,3)B.(-∞,-3)∪(3,+∞)C.$(-∞,\frac{1}{27})∪(27,+∞)$D.$(\frac{1}{27},27)$

查看答案和解析>>

科目: 来源: 题型:填空题

20.给出下列命题:
①角α的终边与单位圆交于点P,过点P作x轴的垂线,垂足为M,则sinα=|MP|;
②存在x∈(0,$\frac{π}{2}$),使sinx+cosx=$\frac{1}{3}$;
③将函数y=sin(2x+$\frac{π}{4}$)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{4}$个单位长度,得到的函数关于($\frac{π}{2}$,0)成中心对称;
④y=sinx与y=x在定义域R上有且只有一个公共点.
其中错误的命题为①②(把所有符合要求的命题序号都填上).

查看答案和解析>>

科目: 来源: 题型:填空题

19.曲线${C_1}:{x^2}+{(y-4)^2}=1$,曲线${C_2}:y=\frac{1}{2}{x^2}$,EF是曲线C1的任意一条直径,P是曲线C2上任一点,则$\overrightarrow{PE}•\overrightarrow{PF}$的最小值为6.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知ABCDEF是正六边形,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AE}$=$\overrightarrow{b}$,则$\overrightarrow{CD}$=$\frac{1}{2}$($\overrightarrow{b}$$-\overrightarrow{a}$).

查看答案和解析>>

科目: 来源: 题型:选择题

17.若$\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{CA}+\overrightarrow{OC}+\overrightarrow{BO}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow 0$C.$\overrightarrow{AC}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=ax2+2ln(2-x)(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,若l与直线x-2y+2=0垂直,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1-a}{2}$x2-ax-a(a>0,x∈R)
(I)求函数f(x)的单调区间;
(II)设函数f(x)在区间[0,3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t);求函数g(t)的解析式.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,在平行四边形ABCD中,∠BAD=120°,AB=2,AD=1,若$\overrightarrow{DE}=t\overrightarrow{DC}$,AE⊥BD,则实数t的值为$\frac{2}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知a,b,c,d∈(0,+∞),求证ac+bd≤$\sqrt{{(a}^{2}+{b}^{2})({c}^{2}+{d}^{2})}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.(1)已知 f(x)=|x+2|+|x-4|的最小值是n,则二项式 (x-$\frac{1}{x}$)n展开式中x2项的系数为多少.
(2)某校高三年级从2名教师和4名学生中选出3人,分别组建成不同的两支球队进行双循环师生友谊赛.要求每支球队中有且只有一名教师,则不同的比赛方案共有几种.

查看答案和解析>>

同步练习册答案