科目: 来源: 题型:
【题目】某市为增强市民的环境保护意识, 面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取
名按年龄分组: 第
组
,第2 组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示,
![]()
(1)若从第
组中用分层抽样的方法抽取
名志愿者参与广场的宣传活动, 应从第
组各抽取多少名志愿者?
(2)在(1)的条件下, 该县决定在这
名志愿者中随机抽取
名志愿者介绍宣传经验, 求第
组至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
为常数,
),且数列
是首项为2,公差为2的等差数列.
(1)若
,当
时,求数列
的前
项和
;
(2)设
,如果
中的每一项恒小于它后面的项,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设圆
的圆心在
轴上,并且过
两点.
(1)求圆
的方程;
(2)设直线
与圆
交于
两点,那么以
为直径的圆能否经过原点,若能,请求出直线
的方程;若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】
为自然对数的底数.
(Ⅰ)求函数
在区间
上的最值;
(Ⅱ)当
时,设函数
(其中
为常数)的3个极值点为
,且
,将
这5个数按照从小到大的顺序排列,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
为常数,
),且数列
是首项为2,公差为2的等差数列.
(1)若
,当
时,求数列
的前
项和
;
(2)设
,如果
中的每一项恒小于它后面的项,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数
与骑兵个数
表示每天的利润
(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】设有一条光线从
射出,并且经
轴上一点
反射.
(1)求入射光线和反射光线所在的直线方程(分别记为
);
(2)设动直线
,当点
到
的距离最大时,求
所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com