科目: 来源: 题型:
【题目】.魔术师从一个装有标号为1,2,3的小球的盒子中,无放回地变走两个小球,每次变走一个,先变走的小球的标号为m,后变走的小球的标号为n,这样构成有序数对(m,n).写出这个魔术的所有结果.
查看答案和解析>>
科目: 来源: 题型:
【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了1000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:
愿意做志愿者工作 | 不愿意做志愿者工作 | 合计 | |
男大学生 | 610 | ||
女大学生 | 90 | ||
合计 | 800 |
(1) 根据题意完成表格;
(2) 是否有的把握认为愿意做志愿者工作与性别有关?
参考公式及数据: ,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 来源: 题型:
【题目】某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取名学生,其中男生名;在这名学生中选择社会科学类的男生、女生均为名.
(1)试问:从高一年级学生中随机抽取人,抽到男生的概率约为多少?
(2)根据抽取的名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过的前提下认为科类的选择与性别有关?
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | |||
女生 | |||
合计 |
附: ,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:
有明显拖延症 | 无明显拖延症 | 合计 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合计 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;
(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如图频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]).
(1)求成绩在[70,80)的频率和[70,80)这组在频率分布直方图中的纵坐标a的值;
(2)求这次考试平均分的估计值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在多面体中, 平面, 平面,且是边长为4的等边三角形, , 与平面所成角的余弦值为, 是线段上一点.
(Ⅰ)若是线段的中点,证明:平面平面;
(Ⅱ)求二面角的平面角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知曲线的极坐标方程为.倾斜角为,且经过定点的直线与曲线交于两点.
(Ⅰ)写出直线的参数方程的标准形式,并求曲线的直角坐标方程;
(Ⅱ)求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com