相关习题
 0  256792  256800  256806  256810  256816  256818  256822  256828  256830  256836  256842  256846  256848  256852  256858  256860  256866  256870  256872  256876  256878  256882  256884  256886  256887  256888  256890  256891  256892  256894  256896  256900  256902  256906  256908  256912  256918  256920  256926  256930  256932  256936  256942  256948  256950  256956  256960  256962  256968  256972  256978  256986  266669 

科目: 来源: 题型:

【题目】已知偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数,则f(﹣ )与f(a2﹣a+1)(a∈R)的大小关系是(
A.f(﹣ )≤f(a2﹣a+1)
B.f(﹣ )≥f(a2﹣a+1)?
C.f(﹣ )<f(a2﹣a+1)
D.f(﹣ )>f(a2﹣a+1)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 (为自然对数的底数).

(1)设曲线处的切线为,若与点的距离为,求的值;

(2)若对于任意实数 恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,过椭圆右焦点的直线交椭圆两点, 的中点,且直线的斜率为

求椭圆的方程;

设另一直线与椭圆交于两点,原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(Ⅰ)讨论函数的单调性;

)若函数有两个极值点,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:

单价x(元/件)

60

62

64

66

68

70

销量y(件)

91

84

81

75

70

67

I)画出散点图,并求关于的回归方程;

II)已知该产品的成本是36/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数y= 的定义域为(
A.(﹣∞,1]
B.(﹣∞,2]?
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

I)若,求函数的单调区间;(其中是自然对数的底数)

II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,曲线的参数方程为.以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(Ⅰ)判断点与直线的位置关系并说明理由;

(Ⅱ)设直线与曲线的两个交点分别为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以(单位:个, )表示面包的需求量, (单位:元)表示利润.

(Ⅰ)求关于的函数解析式;

(Ⅱ)根据直方图估计利润不少于元的概率;

III)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.

查看答案和解析>>

同步练习册答案