科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线
的参数方程为
(
为参数,
).
(Ⅰ)当
时,若曲线
上存在
两点关于点
成中心对称,求直线
的参数方程;
(Ⅱ)在以原点为极点,
轴的正半轴为极轴的极坐标系中,极坐标方程为
的直线
与曲线
相交于
两点,若
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知半径为5的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(1)求圆的方程;
(2)设直线
与圆相交于
、
两点,求实数
的取值范围;
(3)在(2)的条件下,是否存在实数
,使得弦
的垂直平分线
过点
?若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
,
)为奇函数,且相邻两对称轴间的距离为
.
(1)当
时,求
的单调递减区间;
(2)将函数
的图象沿
轴方向向右平移
个单位长度,再把横坐标缩短到原来的
(纵坐标不变),得到函数
的图象.当
时,求函数
的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an;
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】某消防机构为
四个小区的居民代表进行消防安全知识宣传.在代表中,按分层抽样的方式抽取了10名“幸运之星”,“幸运之星”每人获得一份纪念品.相关数据如下:
小区 | A | B | C | D |
代表人数 | 45 | 60 | 30 | 15 |
(I)求此活动中各小区“幸运之星”的人数;
(II)从B小区和C小区的“幸运之星”中任选两人进行后续的活动,求这两个人均来自B小区的概率;
(III)消防机构在B小区内,对参加问答活动的居民进行了是否有兴趣参加消防安全培训的问卷调查,统计结果如下(单位:人):
有兴趣 | 无兴趣 | 合计 | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合计 | 40 | 20 | 60 |
据此判断能否在犯错误的概率不超过
的前提下认为有兴趣参加消防安全培训与性别有关系?
临界值表:
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的几何体中,平面
平面
,四边形
是菱形,四边形
是矩形,
,
,
,
是
的中点.
![]()
(Ⅰ)求证:
平面
;
(II)在线段
上是否存在一点
,使三棱锥
的体积为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),曲线
的普通方程为
,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(I)求直线
的极坐标方程与曲线
的参数方程;
(II)设点D在曲线
上,且曲线
在点D处的切线与直线
垂直,试确定点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
=2csinA
(1)确定角C的大小;
(2)若c=
,且△ABC的面积为
,求a+b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com