相关习题
 0  256838  256846  256852  256856  256862  256864  256868  256874  256876  256882  256888  256892  256894  256898  256904  256906  256912  256916  256918  256922  256924  256928  256930  256932  256933  256934  256936  256937  256938  256940  256942  256946  256948  256952  256954  256958  256964  256966  256972  256976  256978  256982  256988  256994  256996  257002  257006  257008  257014  257018  257024  257032  266669 

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且
(1)求角B的大小;
(2)若a+c=8,求AC边上中线长的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直三棱柱中,的中点,是等腰三角形,的中点,上一点.

I)若平面,求

II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目: 来源: 题型:

【题目】本小题满分12分某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

20

30

合计

30

25

55

(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在棱长为2的正方体中, 分别是棱 的中点,点 分别在棱 上移动,且.

(1)当时,证明:直线平面

(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂对新研发的一种产品进行试销,得到如下数据表:

(1)根据上表求出回归直线方程,并预测当单价定为8.3元时的销量;

(2)如果该工厂每件产品的成本为5.5元,利用所求的回归方程,要使得利润最大,单价应该定为多少?

附:线性回归方程中斜率和截距最小二乘估计计算公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

(1)求椭圆的标准方程;

(2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大小;
(2)若c=2,则当a,b分别取何值时,△ABC的面积取得最大值,并求出其最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

(1)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(2)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.附:独立性检验统计量,其中.

独立性检验临界值表:

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是89.

(1)求的值;

(2)计算乙班7位学生成绩的方差.

(3)从成绩在90分以上的学生中随机抽取两名学生,求乙班至少有一名学生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知{an}是公差为1的等差数列,a1 , a5 , a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= 3+an , 求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案