科目: 来源: 题型:
【题目】设点
,动圆
经过点
且和直线
相切,记动圆的圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设曲线
上一点
的横坐标为
,过
的直线交
于一点
,交
轴于点
,过点
作
的垂线交
于另一点
,若
是
的切线,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有( )
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的偶函数f(x),对任意x1 , x2∈[0,+∞)(x1≠x2),有
<0,则( )
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)
查看答案和解析>>
科目: 来源: 题型:
【题目】某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量
(单位:千克)与该地当日最低气温
(单位:
)的数据,如下表:
| 2 | 5 | 8 | 9 | 11 |
| 12 | 10 | 8 | 8 | 7 |
(1)求出
与
的回归方程
;
(2)判断
与
之间是正相关还是负相关;若该地1月份某天的最低气温为6
,请用所求回归方程预测该店当日的营业额.
附: 回归方程
中,
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=x2+bx+c,若f(﹣3)=f(1),f(0)=﹣3.
(1)求函数f(x)的解析式;
(2)若函数g(x)=
画出函数g(x)图象;
(3)求函数g(x)在[﹣3,1]的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com