相关习题
 0  257236  257244  257250  257254  257260  257262  257266  257272  257274  257280  257286  257290  257292  257296  257302  257304  257310  257314  257316  257320  257322  257326  257328  257330  257331  257332  257334  257335  257336  257338  257340  257344  257346  257350  257352  257356  257362  257364  257370  257374  257376  257380  257386  257392  257394  257400  257404  257406  257412  257416  257422  257430  266669 

科目: 来源: 题型:

【题目】已知分别是椭圆 的长轴与短轴的一个端点, 分别是椭圆的左、右焦点, 椭圆上的一点, 的周长为.

(1)求椭圆的方程;

(2)若是圆上任一点,过点作椭圆的切线,切点分别为,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆C1 和圆C2:x2+y2=b2 , 已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.
(I)求椭圆C1的方程;
(Ⅱ)求△EPM面积最大时直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】设a>0, 是R上的偶函数.
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种商品原来每件售价为25元,年销售量8万件.
(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收人不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 (x2﹣600)万元作为技改费用,投入50万元作为固定宣传费用,投入 x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查,并将调查情况进行整理后制成下表:

年龄(岁)

频数

赞成人数

(1)完成被调查人员年龄的频率分布直方图,并求被调査人员中持赞成态度人员的平均年龄约为多少岁?

(2)若从年龄在的被调查人员中各随机选取人进行调查.请写出所有的基本亊件,并求选取人中恰有人持不赞成态度的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:

学生序号

1

2

3

4

5

6

7

8

数学偏差

20

15

13

3

2

-5

-10

-18

物理偏差

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知之间具有线性相关关系,求关于的线性回归方程;

(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.

参考公式:

参考数据: .

查看答案和解析>>

科目: 来源: 题型:

【题目】设等差数列{an}的前项和为Sn , 且a2=2,S5=15,数列{bn}的前项和为Tn , 且b1= ,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求数列{an}通项公式an及前项和Sn
(Ⅱ) 求数列{bn}通项公式bn及前项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,点是圆上的任意一点,设为该圆的圆心,并且线段的垂直平分线与直线交于点.

(1)求点的轨迹方程;

(2)已知两点的坐标分别为 ,点是直线上的一个动点,且直线分别交(1)中点的轨迹于两点(四点互不相同),证明:直线恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300的为“长纤维”,其余为“短纤维”)

纤维长度

甲地(根数)

3

4

4

5

4

乙地(根数)

1

1

2

10

6

(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.

甲地

乙地

总计

长纤维

短纤维

总计

附:(1)

(2)临界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若AB,求实数m的取值范围;
(2)若A∩B=,求实数m的取值范围.

查看答案和解析>>

同步练习册答案