科目: 来源: 题型:
【题目】如图,一个圆心角为直角的扇形花草房,半径为1,点是花草房弧上一个动点,不含端点,现打算在扇形内种花, ,垂足为, 将扇形分成左右两部分,在左侧部分三角形为观赏区,在右侧部分种草,已知种花的单位面积的造价为,种草的单位面积的造价为2,其中为正常数,设,种花的造价与种草的造价的和称为总造价,不计观赏区的造价,总造价为
求关于的函数关系式;
求当为何值时,总造价最小,并求出最小值。
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车入住泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段,使用频率、满意度等三个方面的信息,在全市范围内发放份调查问卷,回收到有效问卷份,现从中随机抽取份,分别对使用者的年龄段、~岁使用者的使用频率、~岁使用者的满意度进行汇总,得到如下三个表格:
(Ⅰ)依据上述表格完成下列三个统计图形:
(Ⅱ)某城区现有常住人口万,请用样本估计总体的思想,试估计年龄在岁~岁之间,每月使用共享单车在~次的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中, 曲线的参数方程为为参数) ;在以原点为极点, 轴的正半轴为极轴的极坐标系中, 曲线的极坐标参数方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若射线与曲线,的交点分别为 (异于原点). 当斜率时, 求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,a6=18.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn;
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】为提高市场销售业绩,某公司设计两套产品促销方案(方案1运作费用为元/件;方案2的的运作费用为元/件),并在某地区部分营销网点进行试点(每个试点网点只采用一种促销方案),运作一年后,对比该地区上一年度的销售情况,分别统计相应营销网点个数,制作相应的列联表如下表所示.
无促销活动 | 采用促销方案1 | 采用促销方案2 | ||
本年度平均销售额不高于上一年度平均销售额 | 48 | 11 | 31 | 90 |
本年度平均销售额高于上一年度平均销售额 | 52 | 69 | 29 | 150 |
100 | 80 | 60 |
(Ⅰ)请根据列联表提供的信息,为该公司今年选择一套较为有利的促销方案(不必说明理由);
(Ⅱ)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:
售价 | ||||||||
销量 |
(ⅰ)请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
(ⅱ)根据所选回归模型,分析售价定为多少时?利润可以达到最大.
参考公式:相关指数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com