科目: 来源: 题型:
【题目】如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80, ≈1.73)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线m∥平面α,则下列命题中正确的是( )
A.α内所有直线都与直线m异面
B.α内所有直线都与直线m平行
C.α内有且只有一条直线与直线m平行
D.α内有无数条直线与直线m垂直
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆的另一个焦点是,且.
(1) 求椭圆的方程;
(2) 直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为 ,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列和数学期望E(X).
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 为椭圆的右焦点, , .
(Ⅰ)求椭圆的方程;
(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过作,交直线于点,求证: .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 的正方形,E为PC的中点,PB=PD.平面PBD⊥平面ABCD.
(1)证明:PA∥平面EDB.
(2)求三棱锥E﹣BCD与三棱锥P﹣ABD的体积比.
查看答案和解析>>
科目: 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:==,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com