科目: 来源: 题型:
【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了增强高考与高中学习的关联度,考生总成绩由统一高考的语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.保持统一高考的语文、数学、外语科目不变,分值不变,不分文理科,外语科目提供两次考试机会.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物、信息技术七科目中自主选择三科.
(1)某高校某专业要求选考科目物理,考生若要报考该校该专业,则有多少种选考科目的选择;
(2)甲、乙、丙三名同学都选择了物理、化学、历史组合,各学科成绩达到二级的概率都是0.8,且三人约定如果达到二级不参加第二次考试,达不到二级参加第二次考试,如果设甲、乙、丙参加第二次考试的总次数为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.
(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: 的左焦点和上顶点在直线上, 为椭圆上位于轴上方的一点且轴, 为椭圆上不同于的两点,且.
(1)求椭圆的标准方程;
(2)设直线与轴交于点,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={x|y= },B={x|log2x≤1},则A∩B=( )
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱柱为长方体,点是上的一点.
(1)若为的中点,当为何值时,平面平面;
(2)若, ,当时,直线与平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{bn}满足bn=3bn﹣1+2(n≥2),b1=1.数列{an}的前n项和为Sn , 满足Sn=4an+2
(1)求证:{bn+1}是等比数列并求出数列{bn}的通项公式;
(2)求数列{an}的通项公式和前n项和公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com