相关习题
 0  258824  258832  258838  258842  258848  258850  258854  258860  258862  258868  258874  258878  258880  258884  258890  258892  258898  258902  258904  258908  258910  258914  258916  258918  258919  258920  258922  258923  258924  258926  258928  258932  258934  258938  258940  258944  258950  258952  258958  258962  258964  258968  258974  258980  258982  258988  258992  258994  259000  259004  259010  259018  266669 

科目: 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)设Tn= ,求证:Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,侧棱垂直于底面,分别是的中点.

(1)求证:∥平面

(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】化简

1

2

【答案】(1) ;(2) .

【解析】试题分析:(1)切化弦可得三角函数式的值为-1

(2)结合三角函数的性质可得三角函数式的值为

试题解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.

型】解答
束】
18

【题目】平面内给定三个向量

1)求

2)求满足的实数.

3)若,求实数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为2OAD的中点,射线OPOA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:

②任意,都有

③任意,都有.

其中正确结论的序号是__________. (把所有正确结论的序号都填上).

【答案】①②

【解析】试题分析::如图,当时, 相交于点,则

∴①正确;:由于对称性, 恰好是正方形的面积,

∴②正确;:显然是增函数,∴③错误.

考点:函数性质的运用.

型】填空
束】
17

【题目】化简

1

2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数f(x)=lnx﹣ax,a∈R.
(1)当x=1时,函数f(x)取得极值,求a的值;
(2)当0<a< 时,求函数f(x)在区间[1,2]上的最大值;
(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】锐角△ABC中,角A、B、C所对的边分别为a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数的最小值为.

1)求

2)若,求及此时的最大值.

【答案】(1) (2)答案见解析.

【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:小于﹣1时大于﹣1而小于1时大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

试题解析:

(1)由

.这里

①若则当时,

②若时,

③若则当时,

因此

(2)

①若,则有,矛盾;

②若,则有(舍).

时, 此时

时, 取得最大值为5.

点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.

型】填空
束】
21

【题目】已知两个不共线的向量的夹角为,且为正实数.

1)若垂直,求

2)若,求的最小值及对应的的值,并指出此时向量的位置关系.

3)若为锐角,对于正实数,关于的方程有两个不同的正实数解,且,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.

(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

同步练习册答案