相关习题
 0  258842  258850  258856  258860  258866  258868  258872  258878  258880  258886  258892  258896  258898  258902  258908  258910  258916  258920  258922  258926  258928  258932  258934  258936  258937  258938  258940  258941  258942  258944  258946  258950  258952  258956  258958  258962  258968  258970  258976  258980  258982  258986  258992  258998  259000  259006  259010  259012  259018  259022  259028  259036  266669 

科目: 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1的底面为正三角形,E,F分别是A1C1 , B1C1上的点,且满足A1E=EC1 , B1F=3FC1
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC﹣A1B1C1的棱长均相等,求二面角C1﹣AE﹣B的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校艺术节对同一类的 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是 作品获得一等奖”;
乙说:“ 作品获得一等奖”;
丙说:“ 两项作品未获得一等奖”;
丁说:“是 作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是

查看答案和解析>>

科目: 来源: 题型:

【题目】函数 若函数 上有3个零点,则 的取值范围为

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.

(1)求证:

(2)求证:∥平面

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆

(1)直线过点,被圆截得的弦长为,求直线的方程;

(2)直线的的斜率为1,且被圆截得弦,若以为直径的圆过原点,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面几种推理过程是演绎推理的是( )
A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人
B.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
C.由平面三角形的性质,推测空间四边形的性质
D.在数列{an}中,a1=1,an (an1 )(n≥2),由此归纳出{an}的通项公

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:

身高达标

身高不达标

总计

经常参加体育锻炼

40

不经常参加体育锻炼

15

总计

100


(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?

查看答案和解析>>

科目: 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为,距离为15海里的处,并测得渔船正沿方位角为的方向,以15海里/小时的速度向小岛靠拢,我海军舰艇立即以海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2 ,C3
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求 的最大值.

查看答案和解析>>

同步练习册答案