相关习题
 0  258871  258879  258885  258889  258895  258897  258901  258907  258909  258915  258921  258925  258927  258931  258937  258939  258945  258949  258951  258955  258957  258961  258963  258965  258966  258967  258969  258970  258971  258973  258975  258979  258981  258985  258987  258991  258997  258999  259005  259009  259011  259015  259021  259027  259029  259035  259039  259041  259047  259051  259057  259065  266669 

科目: 来源: 题型:

【题目】已知 中,角 的对边分别为 ,且 .
(1)求 Δ A B C 的面积;
(2)求 Δ A B C 中最大角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 ,函数 .
(1)当 时,解不等式
(2)若关于 的方程 的解集中恰好有一个元素,求 的取值范围;
(3)设 ,若对任意 ,函数 在区间 上的最大值与最小值的差不超过1,求 的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某游艇制造厂研发了一种新游艇,今年前5个月的产量如下:

(1)设关于的回归直线方程为现根据表中数据已经正确计算出了的值为,试求的值,并估计该厂月份的产量;(计算结果精确到

(Ⅱ)质检部门发现该厂月份生产的游艇都存在质量问题,要求厂家召回;现有一旅游公司曾向该厂购买了今年前两个月生产的游艇艘,求该旅游公司有游艇被召回的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

科目: 来源: 题型:

【题目】

为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本(元)与月处理量(吨)之间的函数关系可以近似的表示为:,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.

(I)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;

(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形 中, ⊥平面 ,且四边形 是平行四边形.

(1)求证:
(2)当点 的什么位置时,使得 ∥平面 ,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】某班级50名学生的考试分数x分布在区间[50,100)内,设分数x的分布频率是f(x)且f(x)= ,考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.用分层抽样的方法,现在从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,再从这6人中抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
(1)求b的值,并估计班级的考试平均分数;
(2)求P(ξ=7);
(3)求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知当 时,函数 的图象与 的图象有且只有一个交点,则正实数 的取值范围是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方体 中, 的中点, 上,且 ,点 是侧面 (包括边界)上一动点,且 平面 ,则 的取值范围是( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求 的取值范围.

查看答案和解析>>

同步练习册答案