相关习题
 0  258887  258895  258901  258905  258911  258913  258917  258923  258925  258931  258937  258941  258943  258947  258953  258955  258961  258965  258967  258971  258973  258977  258979  258981  258982  258983  258985  258986  258987  258989  258991  258995  258997  259001  259003  259007  259013  259015  259021  259025  259027  259031  259037  259043  259045  259051  259055  259057  259063  259067  259073  259081  266669 

科目: 来源: 题型:

【题目】如图,已知点 分别是Δ 的边 的中点,连接 .现将 沿 折叠至Δ 的位置,连接 .记平面 与平面 的交线为 ,二面角 大小为 .

(1)证明:
(2)证明:
(3)求平面 与平面 所成锐二面角大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点 到点 的距离比它到直线 的距离小 ,记动点 的轨迹为 .若以 为圆心, 为半径( )作圆,分别交 轴于 两点,连结并延长 ,分别交曲线 两点.
(1)求曲线 的方程;
(2)求证:直线 的斜率为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥 中,底面 为梯形, 底面 .过 作一个平面 使得 平面 .

(1)求平面 将四棱锥 分成两部分几何体的体积之比;
(2)若平面 与平面 之间的距离为 ,求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线 过坐标原点 ,圆 的方程为
(1)当直线 的斜率为 时,求 与圆 相交所得的弦长;
(2)设直线 与圆 交于两点 ,且 的中点,求直线 的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业准备投资 万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):

初中

26

4

高中

54

6

第一年因生源和环境等因素,全校总班级至少 个,至多 个,若每开设一个初、高中班,可分别获得年利润 万元、 万元,则第一年利润最大为

A. 万元 B. 万元 C. 万元 D. 万元

查看答案和解析>>

科目: 来源: 题型:

【题目】数列中,若对任意都有为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且)的数列一定是等差比数列,其中正确的判断是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目: 来源: 题型:

【题目】已知 ,设命题 :指数函数 上单调递增.命题 :函数 的定义域为 .若“ ”为假,“ ”为真,求 的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列为数列的前项和,向量

(1)若,求数列通项公式;

(2)若

证明:数列为等差数列;

②设数列满足,问是否存在正整数使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列四个命题:(1)已知向量 是空间的一组基底,则向量 也是空间的一组基底;(2) 在正方体 中,若点 内,且 ,则 的值为1;(3) 圆 上到直线 的距离等于1的点有2个;(4)方程 表示的曲线是一条直线.其中正确命题的序号是.

查看答案和解析>>

同步练习册答案