科目: 来源: 题型:
【题目】如图,已知点 分别是Δ 的边 的中点,连接 .现将 沿 折叠至Δ 的位置,连接 .记平面 与平面 的交线为 ,二面角 大小为 .
(1)证明:
(2)证明:
(3)求平面 与平面 所成锐二面角大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点 到点 的距离比它到直线 的距离小 ,记动点 的轨迹为 .若以 为圆心, 为半径( )作圆,分别交 轴于 两点,连结并延长 ,分别交曲线 于 两点.
(1)求曲线 的方程;
(2)求证:直线 的斜率为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥 中,底面 为梯形, 底面 , .过 作一个平面 使得 平面 .
(1)求平面 将四棱锥 分成两部分几何体的体积之比;
(2)若平面 与平面 之间的距离为 ,求直线 与平面 所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线 过坐标原点 ,圆 的方程为 .
(1)当直线 的斜率为 时,求 与圆 相交所得的弦长;
(2)设直线 与圆 交于两点 ,且 为 的中点,求直线 的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图.
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业准备投资 万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和环境等因素,全校总班级至少 个,至多 个,若每开设一个初、高中班,可分别获得年利润 万元、 万元,则第一年利润最大为
A. 万元 B. 万元 C. 万元 D. 万元
查看答案和解析>>
科目: 来源: 题型:
【题目】数列中,若对任意都有(为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且,)的数列一定是等差比数列,其中正确的判断是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列,,为数列的前项和,向量,,
.
(1)若,求数列通项公式;
(2)若,.
①证明:数列为等差数列;
②设数列满足,问是否存在正整数,,且,,使得、、成等比数列,若存在,求出、的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个命题:(1)已知向量 是空间的一组基底,则向量 也是空间的一组基底;(2) 在正方体 中,若点 在 内,且 ,则 的值为1;(3) 圆 上到直线 的距离等于1的点有2个;(4)方程 表示的曲线是一条直线.其中正确命题的序号是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com