科目: 来源: 题型:
【题目】如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.![]()
![]()
(1)证明: ![]()
(2)证明: ![]()
(3)求平面
与平面
所成锐二面角大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点
到点
的距离比它到直线
的距离小
,记动点
的轨迹为
.若以
为圆心,
为半径(
)作圆,分别交
轴于
两点,连结并延长
,分别交曲线
于
两点.
(1)求曲线
的方程;
(2)求证:直线
的斜率为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
中,底面
为梯形,
底面
,
.过
作一个平面
使得
平面
.![]()
(1)求平面
将四棱锥
分成两部分几何体的体积之比;
(2)若平面
与平面
之间的距离为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
过坐标原点
,圆
的方程为
.
(1)当直线
的斜率为
时,求
与圆
相交所得的弦长;
(2)设直线
与圆
交于两点
,且
为
的中点,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示频率分直方图. ![]()
(Ⅰ) 求图中x的值;
(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业准备投资
万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
|
| |
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和环境等因素,全校总班级至少
个,至多
个,若每开设一个初、高中班,可分别获得年利润
万元、
万元,则第一年利润最大为 ![]()
A.
万元 B.
万元 C.
万元 D.
万元
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
中,若对任意
都有
(
为常数)成立,则称
为“等差比数列”,下面对“等差比数列” 的判断:①
不可能为
;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为
(其中
,且
,
)的数列一定是等差比数列,其中正确的判断是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
,
,
为数列
的前
项和,向量
,
,
.
(1)若
,求数列
通项公式;
(2)若
,
.
①证明:数列
为等差数列;
②设数列
满足
,问是否存在正整数
,
,且
,
,使得
、
、
成等比数列,若存在,求出
、
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个命题:(1)已知向量
是空间的一组基底,则向量
也是空间的一组基底;(2) 在正方体
中,若点
在
内,且
,则
的值为1;(3) 圆
上到直线
的距离等于1的点有2个;(4)方程
表示的曲线是一条直线.其中正确命题的序号是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com