科目: 来源: 题型:
【题目】已知抛物线
:
的焦点为
,准线为
,三个点
,
,
中恰有两个点在
上.
(1)求抛物线
的标准方程;
(2)过
的直线交
于
,
两点,点
为
上任意一点,证明:直线
,
,
的斜率成等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
被直线
,
分成面积相等的四个部分,且截
轴所得线段的长为2.
(1)求
的方程;
(2)若存在过点
的直线与
相交于
,
两点,且点
恰好是线段
的中点,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】一装有水的直三棱柱
容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面
水平放置,如图所示,点
,
,
,
分别在棱
,
,
,
上,水面恰好过点
,
,
,
,且
.
![]()
(1)证明:
;
(2)若底面
水平放置时,求水面的高.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的左焦点是
,离心率为
,且
上任意一点
到
的最短距离为
.
(1)求
的方程;
(2)过点
的直线
(不过原点)与
交于两点
、
,
为线段
的中点.
(i)证明:直线
与
的斜率乘积为定值;
(ii)求
面积的最大值及此时
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=aln x+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数f(x)的解析式及单调区间;
(2)若函数g(x)=f(x)+m-ln 4在
上恰有两个零点,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(III)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com