相关习题
 0  258979  258987  258993  258997  259003  259005  259009  259015  259017  259023  259029  259033  259035  259039  259045  259047  259053  259057  259059  259063  259065  259069  259071  259073  259074  259075  259077  259078  259079  259081  259083  259087  259089  259093  259095  259099  259105  259107  259113  259117  259119  259123  259129  259135  259137  259143  259147  259149  259155  259159  259165  259173  266669 

科目: 来源: 题型:

【题目】已知抛物线 的焦点为,准线为,三个点 中恰有两个点在上.

(1)求抛物线的标准方程;

(2)过的直线交 两点,点上任意一点,证明:直线 的斜率成等差数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知四棱锥中,底面为直角梯形, 平面,侧面是等腰直角三角形, ,点是棱的中点.

(1)证明:平面平面

(2)求锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知为坐标原点,椭圆 的左焦点是,离心率为,且上任意一点的最短距离为.

(1)求的方程;

(2)过点的直线(不过原点)与交于两点 为线段的中点.

(i)证明:直线的斜率乘积为定值;

(ii)求面积的最大值及此时的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数f(x)aln xbx2图象上点P(1f(1))处的切线方程为2xy30.

(1)求函数f(x)的解析式及单调区间;

(2)若函数g(x)f(x)mln 4上恰有两个零点,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆 的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且.

Ⅰ)求椭圆的离心率;

Ⅱ)若过三点的圆恰好与直线 相切,求椭圆的方程;

III)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由

查看答案和解析>>

同步练习册答案