科目: 来源: 题型:
【题目】已知函数f(x)=ax﹣ x2﹣aln(x+1)(a>0),g(x)=ex﹣x﹣1,曲线y=f(x)与y=g(x)在原点处的公共的切线.
(1)若x=0为函数f(x)的极大值点,求f(x)的单调区间(用a表示);
(2)若x≥0,g(x)≥f(x)+ x2 , 求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D点是AB的中点
(1)求证:BC1∥平面CA1D.
(2)求三棱锥B-A1DC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C1: + =1(a>0,b>0)的离心率为 ,其右焦点到直线2ax+by﹣ =0的距离为 .
(1)求椭圆C1的方程;
(2)过点P(0,﹣ )的直线l交椭圆C1于A,B两点.
①证明:线段AB的中点G恒在椭圆C2: + =1的内部;
②判断以AB为直径的圆是否恒过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线与轴平行时,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)在轴上是否存在异于点的定点,使得直线变化时,总有?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两俱乐部举行乒乓球团体对抗赛.双方约定:
①比赛采取五场三胜制(先赢三场的队伍获得胜利.比赛结束)
②双方各派出三名队员.前三场每位队员各比赛﹣场
已知甲俱乐部派出队员A1、A2 . A3 , 其中A3只参加第三场比赛.另外两名队员A1、A2比赛场次未定:乙俱乐部派出队员B1、B2 . B3 , 其中B1参加第一场与第五场比赛.B2参加第二场与第四场比赛.B3只参加第三场比赛
根据以往的比赛情况.甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如表:
A1 | A2 | A3 | |
B1 | |||
B2 | |||
B3 |
(1)若甲俱乐部计划以3:0取胜.则应如何安排A1、A2两名队员的出场顺序.使得取胜的概率最大?
(2)若A1参加第一场与第四场比赛,A2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X,求X的分布列及数学期望E(X)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等比数列{an}满足an+1+an=104n﹣1(n∈N*),数列{bn}的前n项和为Sn , 且bn=log2an .
(1)求bn , Sn;
(2)设cn= ,证明: + +…+ < Sn+1(n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com