相关习题
 0  259182  259190  259196  259200  259206  259208  259212  259218  259220  259226  259232  259236  259238  259242  259248  259250  259256  259260  259262  259266  259268  259272  259274  259276  259277  259278  259280  259281  259282  259284  259286  259290  259292  259296  259298  259302  259308  259310  259316  259320  259322  259326  259332  259338  259340  259346  259350  259352  259358  259362  259368  259376  266669 

科目: 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的侧面PAD是正三角形,底面ABCD为菱形,A点E为AD的中点,若BE=PE.

(1)求证:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数,满足.

1)求函数的解析式;

2)若关于的不等式上有解,求实数的取值范围;

3)若函数的两个零点分别在区间内,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,焦距长为2,左准线为

1)求椭圆的方程及其离心率;

2)若过点的直线交椭圆 两点,且为线段的中点,求直线的方程;

3)过椭圆右准线上任一点引圆 的两条切线,切点分别为 .试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:

喜爱

不喜爱

总计

男学生

60

80

女学生

总计

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;
(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆N的标准方程为(x-5)2+(y-6)2a2(a>0).

(1)若点M(6,9)在圆上a的值

(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点a的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面内的向量满足:,且的夹角为,又,则由满足条件的点所组成的图形面积是( )

A. 2 B. C. 1 D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低万元与技术改造投入万元之间满足:①的乘积成正比;②当时, ,并且技术改造投入比率 为常数且

1)求的解析式及其定义域;

2)求的最大值及相应的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中, 为正三角形,平面底面,底面为梯形, ,点在棱上,且. 

求证:(1)平面平面

2)求证: 平面

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案