科目: 来源: 题型:
【题目】如图,在多面体ABCDFE中,四边形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.
(1)若G点是DC的中点,求证:FG∥平面AED.
(2)求证:平面DAF⊥平面BAF.
(3)若AE=AD=1,AB=2,求三棱锥D-AFC的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】设,或,,.
从以下两个命题中任选一个进行证明:
当时函数恰有一个零点;
当时函数恰有一个零点;
如图所示当时如,与的图象“好像”只有一个交点,但实际上这两个函数有两个交点,请证明:当时,与两个交点.
若方程恰有4个实数根,请结合的研究,指出实数k的取值范围不用证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点是直线上的动点,定点 点为的中点,动点满足.
(1)求点的轨迹的方程
(2)过点的直线交轨迹于两点,为上任意一点,直线交于两点,以为直径的圆是否过轴上的定点? 若过定点,求出定点的坐标;若不过定点,说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数/个 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);
(2)若用非线性回归模型求关的回归方程为 且相关指数
( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,,相关指数.
。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知 =(2,﹣ ), =(sin2( +x),cos2x).令f(x)= ﹣1,x∈R,函数g(x)=f(x+φ),φ∈(0, )的图象关于(﹣ ,0)对称. (Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1﹣ ,求g(B)的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】身体素质拓展训练中,人从竖直墙壁的顶点A沿光滑杆自由下滑到倾斜的木板上(人可看作质点),若木板的倾斜角不同,人沿着三条不同路径AB、AC、AD滑到木板上的时间分别为t1、t2、t3,若已知AB、AC、AD与板的夹角分别为70o、90o和105o,则( )
A. t1>t2>t3 B. t1<t2<t3 C. t1=t2=t3 D. 不能确定t1、t2、t3之间的关系
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求实数m的值;
(2)若l1∥l2,求l1与l2之间的距离d.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l经过直线2x+y-5=0与x-2y=0的交点P.
(1)若直线l平行于直线l1:4x-y+1=0,求l的方程;
(2)若直线l垂直于直线l1:4x-y+1=0,求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com