相关习题
 0  259982  259990  259996  260000  260006  260008  260012  260018  260020  260026  260032  260036  260038  260042  260048  260050  260056  260060  260062  260066  260068  260072  260074  260076  260077  260078  260080  260081  260082  260084  260086  260090  260092  260096  260098  260102  260108  260110  260116  260120  260122  260126  260132  260138  260140  260146  260150  260152  260158  260162  260168  260176  266669 

科目: 来源: 题型:

【题目】如图,正三棱柱的中点

(1)求证:

(2)若点为四边形内部及其边界上的点,且三棱锥的体积为三棱柱体积的,试在图中画出点的轨迹,并说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】12分)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为(),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为

ξ

0

1

2

3






(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;

(Ⅱ)的值;

(Ⅲ)求数学期望ξ

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)求直线EC与平面ABE所成角的正弦值;
(Ⅲ)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出 ;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:

身高达标

身高不达标

总计

积极参加体育锻炼

40

不积极参加体育锻炼

15

总计

100

(1)完成上表;

(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).

参考公式:

参考数据:

P(K2≥k)

0.25

0.15

0.10

0.05

0.025

0.010

0.001

k

1.323

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】P={ },Q={ } ,

(1)

(2)若,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元。

(1)设铁栅长为米,一堵砖墙长为米,求函数的解析式;

(2)为使仓库总面积达到最大,正面铁栅应设计为多长?

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求第3,4,5组的频率;

(2)为了了解最优秀学生的情况,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试.

查看答案和解析>>

同步练习册答案