科目: 来源: 题型:
【题目】四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥平面D1AC.
![]()
(1)求二面角E-AC-D1的大小;
(2)在D1E上是否存在一点P,使A1P∥平面EAC?若存在,求D1P∶PE的值;不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设
,
为非零向量,则“存在负数λ,使得
=λ
”是
<0”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.
(1)求证:PA∥平面QBC;
(2)若PQ⊥平面QBC,求锐二面角Q-PB-A的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:
=1(a>b>0)的离心率为
,椭圆C截直线y=1所得线段的长度为2
.![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在四面体ABCD中,AB,BC,CD两两互相垂直,且BC=CD=1.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
x3﹣
ax2 , a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3 .
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn , 已知S2n+1=bnbn+1 , 求数列
的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,∠ABC=
,D是棱AC的中点,且AB=BC=BB1=2.
![]()
(1)求证:AB1∥平面BC1D;
(2)求异面直线AB1与BC1所成的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com