科目: 来源: 题型:
【题目】设f(x)=
(x>0),计算观察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根据以上事实得到当n∈N*时,fn(1)= .
查看答案和解析>>
科目: 来源: 题型:
【题目】定义域为R的偶函数f(x)满足x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(x+1)恰有三个零点,则a的取值范围是( )
A.(0,
)
B.(0,
)
C.(
,
)
D.(
,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为( )
A.20% 369
B.80% 369
C.40% 360
D.60% 365
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=3sin(2x﹣
)的图象可以由y=3sin2x的图象( )
A.向右平移
个单位长度得到
B.向左平移
个单位长度得到
C.向右平移
个单位长度得到
D.向左平移
个单位长度得到
查看答案和解析>>
科目: 来源: 题型:
【题目】在数列
中,已知
,对于任意的
,有
.
(1)求数列
的通项公式.
(2)若数列
满足
,求数列
的通项公式.
(3)设
,是否存在实数
,当
时,
恒成立?若存在,求实数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=
x2+alnx(a<0).
(1)若函数f(x)的图象在点(2,f(2))处的切线斜率为
,求实数a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2﹣(1﹣a)x,当a≤﹣1时,讨论f(x)与g(x)图象交点的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
已知关于
的不等式
,其中
.
(1)当
变化时,试求不等式的解集
;
(2)对于不等式的解集
,若满足
(其中
为整数集). 试探究集合
能否为有限集?若 能,求出使得集合
中元素个数最少的
的所有取值,并用列举法表示集合
;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com