科目: 来源: 题型:
【题目】某经济开发区规划要修建一地下停车场,停车场横截面是如图所示半椭圆形AMB,其中AP为2百米,BP为4百米,
,M为半椭圆上异于A,B的一动点,且
面积最大值为
平方百米,如图建系.
![]()
求出半椭圆弧的方程;
若要将修建地下停车场挖出的土运到指定位置P处,N为运土点,以A,B为出口,要使运土最省工,工程部需要指定一条分界线,请求出分界线所在的曲线方程;
若在半椭圆形停车场的上方修建矩形商场,矩形的一边CD与AB平行,设
百米,试确定t的值,使商场地面的面积最大.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆
的长轴长为4,离心率为
,过点
的直线l交椭圆于
两点,与x轴交于P点,点
关于
轴的对称点为
,直线
交
轴于
点.
![]()
(1)求椭圆方程;
(2)求证:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某位同学进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了12月11日至12月15日的白天平均气温
(℃)与该小卖部的这种饮料销量
(杯),得到如下数据:
日期 | 12月11日 | 12月12日 | 12月13日 | 12月14日 | 12月15日 |
平均气温 | 9 | 10 | 12 | 11 | 8 |
销量 | 23 | 25 | 30 | 26 | 21 |
(1)请根据所给五组数据,求出
关于
的线性回归方程
;
(2)据(1)中所得的线性回归方程,若天气预报12月16日的白天平均气温7(℃),请预测该奶茶店这种饮料的销量. (参考公式:
,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系
中的一个椭圆,它的中心在原点,左焦点为
,右顶点为
,
(1)求该椭圆的标准方程;
(2)(文)若
是椭圆上的动点,过P作垂直于x轴的垂线,垂足为M,延长MP至N,使得P恰好为MN中点,求点N的轨迹方程;
(理)若已知点
,
是椭圆上的动点,求线段
中点
的轨迹方程;
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.
![]()
(1)根据直方图估计这个开学季内市场需求量
的平均数;
(2)将
表示为
的函数;
(3)根据直方图估计利润
不少于4000元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.
,
分别表示甲、乙两班各自5名学生学分的标准差,则
_______
.(填“
”“<”或“=”)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数
,其图象在点
处切线的斜率为-3.
(1)求
与
关系式;
(2)求函数
的单调区间(用只含有
的式子表示);
(3)当
时,令
,设
是函数
的两个零点,
是
与
的等差中项,求证:
(
为函数
的导函数).
查看答案和解析>>
科目: 来源: 题型:
【题目】采用系统抽样方法从
人中抽取
人做问卷调查,为此将他们随机编号为
,
,
,
,分组后某组抽到的号码为41.抽到的
人中,编号落入区间
的人数为( )
A. 10 B.
C. 12 D. 13
查看答案和解析>>
科目: 来源: 题型:
【题目】【2018届天津市耀华中学高三上学期第三次月考】已知椭圆
的一个焦点在直线
上,且离心率
.
(1)求该椭圆的方程;
(2)若
与
是该椭圆上不同的两点,且线段
的中点
在直线
上,试证:
轴上存在定点
,对于所有满足条件的
与
,恒有
;
(3)在(2)的条件下,
能否为等腰直角三角形?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com