相关习题
 0  261086  261094  261100  261104  261110  261112  261116  261122  261124  261130  261136  261140  261142  261146  261152  261154  261160  261164  261166  261170  261172  261176  261178  261180  261181  261182  261184  261185  261186  261188  261190  261194  261196  261200  261202  261206  261212  261214  261220  261224  261226  261230  261236  261242  261244  261250  261254  261256  261262  261266  261272  261280  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为集合的子集,且,若,则称为集合元“大同集”.

(1)写出实数集的一个二元“大同集”;

(2)是否存在正整数集的二元“大同集”,请说明理由;

(3)求出正整数集的所有三元“大同集”.

查看答案和解析>>

科目: 来源: 题型:

【题目】对称轴为坐标轴的椭圆的焦点为上.

(1)求椭圆的方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,则当的面积为时,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.

(1)试写出的表达式;

(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

查看答案和解析>>

科目: 来源: 题型:

【题目】运动会时,高一某班共有28名同学参加比赛,每人至多报两个项目.15人参加游泳,8人参加田径,14人参加球类.同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,则只参加一个项目的有______人.

查看答案和解析>>

科目: 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为. 

(1)当时,求曲线和曲线的交点的直角坐标;

(2)当时,设 分别是曲线与曲线上动点,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】设椭圆的方程为),点为坐标原点,点 的坐标分别为 ,点在线段上,满足,直线的斜率为

(1)求椭圆的方程;

(2)若斜率为的直线交椭圆 两点,交轴于点),问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】—只蚂蚁在三边长分别为的三角形内自由爬行,某时刻该蚂蚁距离三角形的任意一个顶点的距离不超过的概率为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中, 平面,且 是边的中点.

(1)求证: 平面

(2)若是线段上的动点(不含端点):问当为何值时,二面角余弦值为

查看答案和解析>>

同步练习册答案